Skip to main content

Advertisement

Log in

Imparting Pulley Effect and Self-healability to Cathode Binder of Li-S Battery for Improvement of the Cycling Stability

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To construct structurally stable sulfur cathode of Li-S battery with improved cycling performance, poly(acrylic acid) (PAA) crosslinked by cationic hydroxypropyl polyrotaxane (HPRN+) via dynamically reversible boronic ester bonds is synthesized and serves as the cathode binder. The smart polymer networks offer multifunction including buffering the volume change of the cathode during charge/discharge through the pulley effect of polyrotaxanes (PR), suppressing the shuttle effect by adsorption of polysulfide using the plentiful carboxyl, hydroxyl and quaternary ammonium cationic groups, and self-healing the micro-damages to ensure stable conduction pathways of the electrode. As a result, the Li-S batteries based on this novel multifunctional binder and simple commercial sulfur/carbon composites cathode exhibit excellent specific capacity and cycling stability. In particular, the specific capacity decay per cycle of the cell is only 0.064% along with high Coulombic efficiency after 550 cycles at 1.0 C, which is superior to most of the reported binders. Even under high sulfur loading, moreover, the cathode can deliver superior areal capacity and cycling stability. This proposed binder provides a new way for the design of high-stability sulfur cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, S.; Guan, R.; Wang, S.; Xiao, M.; Han, D.; Sun, L.; Meng, Y. Polymers for high performance Li-S batteries: material selection and structure design. Prog. Polym. Sci. 2019, 89, 19–60.

    Article  CAS  Google Scholar 

  2. Ely, T. O.; Kamzabek, D.; Chakraborty, D.; Doherty, M. F. Li-sulfur batteries: state of the art and future directions. ACS Appl. Energy Mater. 2018, 1, 1783–1814.

    Article  Google Scholar 

  3. Zhu, J.; Zhu, P.; Yan, C.; Dong, X.; Zhang, X. Recent progress in polymer materials for advanced lithium-sulfur batteries. Prog. Polym. Sci. 2019, 90, 118.

    Article  CAS  Google Scholar 

  4. Li, X.; Lv, R.; Zou, S.; Na, B.; Liu, P.; Ma, Y.; Liu, H. Polyaniline nanopillars on surface cracked carbon fibers as an ultrahighperformance cathode for a flexible rechargeable aqueous Zn-ion battery. Compos. Sci. Technol. 2019, 180, 71–77.

    Article  CAS  Google Scholar 

  5. Zhang, Q.; Cheng, X. B.; Huang, J. Q.; Peng, H. J.; Fei, W. Review of carbon materials for advanced lithium-sulfur batteries. New Carbon Mater. 2015, 81, 850–850.

    Article  Google Scholar 

  6. Zhao, H.; Deng, N.; Yan, J.; Kang, W.; Ju, J.; Ruan, Y.; Wang, X.; Zhuang, X.; Li, Q.; Cheng, B. A review on anode for lithium-sulfur batteries: progress and prospects. Chem. Eng. J. 2018, 347, 343–365.

    Article  CAS  Google Scholar 

  7. Barghamadi, M.; Best, A. S.; Bhatt, A. I.; Hollenkamp, A. F.; Musameh, M.; Rees, R. J.; Rüther, T. Lithium-sulfur batteries-the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ. Sci. 2014, 7, 3902–3920.

    Article  CAS  Google Scholar 

  8. Wang, L.; Ye, Y.; Chen, N.; Huang, Y.; Li, L.; Wu, F.; Chen, R. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800919.

    Article  Google Scholar 

  9. Deng, N.; Kang, W.; Liu, Y.; Ju, J.; Wu, D.; Li, L.; Hassan, B. S.; Cheng, B. A review on separators for lithiumsulfur battery: progress and prospects. J. Power Sources 2016, 331, 132–155.

    Article  CAS  Google Scholar 

  10. Huang, J.; Sun, Y.; Wang, Y.; Zhang, Q. Review on advanced functional separators for lithium-sulfur batteries. Acta Chim. Sin. 2017, 75, 173–188.

    Article  CAS  Google Scholar 

  11. Yuan, H.; Huang, J. Q.; Peng, H. J.; Titirici, M. M.; Xiang, R.; Chen, R.; Liu, Q.; Zhang, Q. A review of functional binders in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1802107.

    Article  Google Scholar 

  12. Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330.

    Article  CAS  Google Scholar 

  13. Wang, Y. L.; Liu, B. X.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Research progress of cathode binder for high performance lithium-ion battery. Acta Polymerica Sinica (in Chinese) 2020, 51, 326–337.

    CAS  Google Scholar 

  14. Feng, J., Yi, H., Lei, Z, Wang, J., Zeng, H., Deng, Y., Wang, C. A three-dimensional crosslinked chitosan sulfate network binder for high-performance Li-S batteries. J. Energy Chem. 2021, 56, 171–178.

    Article  CAS  Google Scholar 

  15. Zeng, F.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y. S. Multidimensional polycation β-cyclodextrin polymer as an effective aqueous binder for high sulfur loading cathode in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 26257–26265.

    Article  CAS  Google Scholar 

  16. Liao, J.; Ye, Z. Quaternary ammonium cationic polymer as a superior bifunctional binder for lithium-sulfur batteries and effects of counter anion. Electrochim. Acta 2018, 259, 626–636.

    Article  CAS  Google Scholar 

  17. H. Wang, M. Ling, Y. Bai, S. Chen, Y. Yuan, G. Liu, C. Wu, F. Wu, Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. J. Mater. Chem. A 2018, 6, 6959–6966.

    Article  CAS  Google Scholar 

  18. Tu, S., Chen, X., Zhao, X., Cheng, M., Xiong, P., He, Y., Zhang, Q., Xu, Y. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1804581.

    Article  Google Scholar 

  19. Liu, J.; Galpaya, D. G.; Yan, L.; Sun, M.; Lin, Z.; Yan, C.; Liang, C.; Zhang, S. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery. Energy Environ. Sci. 2017, 10, 750–755.

    Article  CAS  Google Scholar 

  20. Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, X.; Liu, J.; Zhou, J.; Shen, X.; Yang, T.; Chen, Y. A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv. Mater. 2017, 29, 1605160.

    Article  Google Scholar 

  21. Yan, L.; Gao, X.; Wahid-Pedro, F.; Quinn, J. T. E.; Meng, Y. Y. Li, A novel epoxy resin-based cathode binder for low cost, long cycling life, and high-energy lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 14315–14323.

    Article  CAS  Google Scholar 

  22. Zhang, H.; Hu, X.; Zhang, Y.; Wang, S.; Xin, F.; Chen, X.; Yu, D. 3D-crosslinked tannic acid/poly (ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries. Energy Storage Mater. 2019, 17, 293–299.

    Article  Google Scholar 

  23. Fu, X.; Scudiero, L.; Zhong, W. H. A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2018, 7, 1835–1848.

    Article  Google Scholar 

  24. Jie, L.; Sun, M.; Zhang, Q.; Dong, F.; Kaghazchi, P.; Fang, Y.; Zhang, S.; Lin, Z. A robust network binder with dual functions of Cu2+ ions as ionic crosslinking and chemical binding agents for highly stable Li-S batteries. J. Mater. Chem. A 2018, 6, 7382–7388.

    Article  Google Scholar 

  25. Mai, W.; Yu, Q.; Han, C.; Kang, F.; Li, B. Self-healing materials for energy-storage devices. Adv. Funct. Mater. 2020, 30, 1909912.

    Article  CAS  Google Scholar 

  26. Wang, H.; Wang, Y.; Zheng, P.; Yang, Y.; Chen, Y.; Cao, Y.; Deng, Y.; Wang, C. Self-healing double-cross-linked supramolecular binders of a polyacrylamide-grafted soy protein isolate for Li-S batteries. ACS Sustain. Chem. Eng. 2020, 8, 12799–12808.

    Article  Google Scholar 

  27. Chu, Y.; Cui, X.; Pan, Q. Realizing high-performance sulfur cathodes through a self-healing and confining strategy. ACS Appl. Energy Mater. 2018, 1, 6919.

    Article  CAS  Google Scholar 

  28. Xu, G.; Yan, Q. B.; Kushima, A.; Zhang, X.; Pan, J.; Li, J. Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur battery. Nano Energy 2017, 31, 568–574.

    Article  CAS  Google Scholar 

  29. Kim, S.; Cho, M.; Chanthad, M.; Lee, Y.; Chanthad C. New redoxmediating polymer binder for enhancing performance of Li-S batteries. J. Energy Chem. 2020, 44, 154–161.

    Article  Google Scholar 

  30. Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

    Article  CAS  Google Scholar 

  31. Xie, Z. H.; Rong, M. Z.; Zhang, M. Q.; Liu, D. Implementation of the pulley effect of polyrotaxane in transparent bulk polymer for simultaneous strengthening and toughening. Macromol. Rapid Commun. 2020, 41, 2000371.

    Article  CAS  Google Scholar 

  32. Yoo, D. J.; Elabd, A.; Choi, S.; Cho, Y.; Kim, J.; Lee, S. J.; Choi, S. H.; Kwon, T. W.; Char, K.; Kim, K. J.; Coskun, A.; Choi, J. W. Highly elastic polyrotaxane binders for mechanically stable lithium hosts in lithium-metal batteries. Adv. Mater. 2019, 31, 1901645.

    Article  Google Scholar 

  33. Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62–65.

    Article  Google Scholar 

  34. Xie, Z. H.; Huang, Z. X.; Rong, M. Z.; Zhang, M. Q. Imparting high robustness and suppression ability of shuttle effect to sulfur cathode in Li-S battery via a novel multifunctional binder. Mater. Today Energy 2020, 18, 100555.

    Article  CAS  Google Scholar 

  35. Prado, H. J.; Matulewicz, M. C. Cationization of polysaccharides: A path to greener derivatives with many industrial applications. Eur. Polym. J. 2014, 52, 53–75.

    Article  CAS  Google Scholar 

  36. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Mechanically robust, self-healable, and highly stretchable “living” crosslinked polyurethane based on a reversible C-C bond. Adv. Funct. Mater. 2018, 28, 1706050.

    Article  Google Scholar 

  37. Li, H.; Tang, W.; Huang, Y.; Ruan, W.; Zhang, M. Nanopore separator of cross-linked poly(propylene glycol)-co-pentaerythritol triacrylate for effectively suppressing polysulfide shuttling in Li-S batteries. Polym. Chem. 2019, 10, 2697–2705.

    Article  CAS  Google Scholar 

  38. Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium-sulfur battery. Adv. Energy Mater. 2018, 8, 1702889.

    Article  Google Scholar 

  39. Okumura, Y.; Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 2001, 13, 485–487.

    Article  CAS  Google Scholar 

  40. Tang, C.; Inomata, A.; Sakai, Y.; Yokoyama, H.; Miyoshi, T.; Ito, K. Effects of chemical modification on the molecular dynamics of complex polyrotaxanes investigated by solid-state NMR. Macromolecules 2013, 46, 6898–6907.

    Article  CAS  Google Scholar 

  41. Wu, B. Y.; Xu, Y. W.; Le, X. X.; Jian, Y. K.; Lu, W.; Zhang, J. W.; Chen, T. Smart hydrogel actuators assembled via dynamic boronic ester bonds. Acta Polym. Sin. 2019, 5, 496–504.

    Google Scholar 

  42. Peng, W. L.; You, Y.; Xie, P.; Rong, M. Z.; Zhang, M. Q. Adaptable interlocking macromolecular networks with homogeneous architecture made from immiscible single networks. Macromolecules 2020, 53, 584–593.

    Article  CAS  Google Scholar 

  43. You, Y.; Peng, W. L.; Xie, P.; Rong, M. Z.; Zhang, M. Q.; Liu, D. Topological rearrangement-derived homogeneous polymer networks capable of reversibly interlocking: from phantom to reality and beyond. Mater. Today 2020, 33, 45–55.

    Article  CAS  Google Scholar 

  44. Ye, H.; Lei, D.; Shen, L.; Ni, B.; Li, B.; Kang, F.; He, Y. B. In situ polymerized cross-linked binder for cathode in lithium-sulfur batteries. Chin. Chem. Lett. 2019, 31, 570–574.

    Article  Google Scholar 

  45. Frischmann, P. D.; Hwa, Y.; Cairns, E. J.; Helms, B. A. Redox-active supramolecular polymer binders for lithium-sulfur batteries that adapt their transport properties in operando. Chem. Mater. 2016, 28, 7414–7421.

    Article  CAS  Google Scholar 

  46. Vizintin, A.; Guterman, R.; Schmidt, J.; Antonietti, M.; Dominko, R. Linear and cross-linked ionic liquid polymers as binders in lithium-sulfur batteries. Chem. Mater. 2018, 30, 5444–5450.

    Article  CAS  Google Scholar 

  47. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 2018, 80, 39–93.

    Article  CAS  Google Scholar 

  48. Li, G.; Ling, M.; Ye, Y.; Li, Z.; Guo, J.; Yao, Y.; Zhu, J.; Lin, Z.; Zhang, S. Acacia senegal-inspired bifunctional binder for longevity of lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1500878.

    Article  Google Scholar 

  49. Hwa, Y.; Frischmann, P. D.; Helms, B. A.; Cairns, E. J. Aqueous-processable redox-active supramolecular polymer binders for advanced lithium/sulfur cells. Chem. Mater. 2018, 30, 685–691.

    Article  CAS  Google Scholar 

  50. Pan, J.; Xu, G.; Ding, B.; Han, J.; Dou, H.; Zhang, X. Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Adv. 2015, 5, 13709–13714.

    Article  CAS  Google Scholar 

  51. Hernández, G.; Lago, N.; Shanmukaraj, D.; Armand, M.; Mecerreyes, D. Polyimide-polyether binders-diminishing the carbon content in lithium sulfur batteries. Mater. Today Energy 2017, 6, 264–270.

    Article  Google Scholar 

  52. Yi, H.; Lan, T.; Yang, Y.; Lei, Z.; Zeng, H.; Tang, T.; Wang, C.; Deng, Y. Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 18660–18668.

    Article  CAS  Google Scholar 

  53. Yi, H.; Lan, T.; Yang, Y.; Zeng, H.; Zhang, T.; Tang, T.; Wang, C.; Deng, Y. A robust aqueous-processable polymer binder for longlife, high-performance lithium sulfur battery. Energy Stor. Mater. 2019, 21, 61–68.

    Article  Google Scholar 

  54. Qi, Q.; Deng, Y.; Gu, S.; Gao, M.; Hasegawa, J. Y.; Zhou, G.; Lv, X.; Lv, W.; Yang, Q. H. l-Cysteine-modified acacia gum as a multifunctional binder for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 47956–47962.

    Article  CAS  Google Scholar 

  55. Zhong, L.; Mo, Y.; Deng, K.; Wang, S.; Han, D.; Ren, S.; Xiao, M.; Meng, Y. Lithium borate containing bifunctional binder to address both ion transporting and polysulfide trapping for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 28968–28977.

    Article  CAS  Google Scholar 

  56. Luo, X.; Lu, X.; Chen, X.; Chen, Y.; Yu, C.; Su, D.; Wang, G.; Cui, L. A functional hyperbranched binder enabling ultra-stable sulfur cathode for high-performance lithium-sulfur battery. J. Energy Chem. 2020, 50, 63–72.

    Article  Google Scholar 

  57. Zheng, M.; Cai, X.; Tan, Y.; Wang, W.; Wang, D.; Fei, H.; Saha, P.; Wang, G. A high-resilience and conductive composite binder for lithium-sulfur batteries. Chem. Eng. J. 2020, 389, 124404.

    Article  CAS  Google Scholar 

  58. Yu, Z.; Gao, T.; Le, T.; Wang, W.; Wang, L.; Yang, Y. A homemade self-healing material utilized as multi-functional binder for longlifespan lithium-sulfur batteries. J. Mater. Sci. Mater. Electron. 2019, 30, 5536–5543.

    Article  CAS  Google Scholar 

  59. Chua, Y.; Chen, N.; Cui, X.; Liu, A.; Zhen, L.; Pan, Q. A multifunctional binder for high loading sulfur cathode. J. Energy Chem. 2020, 46, 99–104.

    Article  Google Scholar 

  60. Liu, Z.; He, X.; Fang, C.; Camacho-orero, L. E.; Liu, G. Reversible crosslinked polymer binder for recyclable Lithium-Sulfur batteries with high performance. Adv. Funct. Mater. 2020, 30, 2003605.

    Article  CAS  Google Scholar 

  61. Jin, B.; Yang, L.; Zhang, J.; Cai, Y.; Zhu, J.; Lu, J.; Hou, Y.; He, Q.; Xing, H.; Zhan, X. Bioinspired binders actively controlling ion migration and accommodating volume change in high sulfur loading lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1902938.

    Article  CAS  Google Scholar 

  62. Guo, R.; Wang, J.; Zhang, S.; Han, W. Q. Multifunctional cross-linked polymer-laponite nanocomposite binder for lithium-sulfur batteries. Chem. Eng. J. 2020, 388, 124316.

    Article  CAS  Google Scholar 

  63. Jeon, J.; Yoo, J. K.; Yim, S.; Jeon, K.; Jung, Y. S. Natural wood-derived lignosulfonate ionomer as multifunctional binder for high-performance lithium-sulfur battery. ACS Sustain. Chem. Eng. 2019, 21, 17580–17586.

    Article  Google Scholar 

  64. Xu, H.; Zou, Z.; Tang, B.; Chen, Z.; Zhang, H.; Chen, J.; Cui, G. The study on the application of pectin binder in lithium-sulfur batteries. Acta Polymerica Sinica (in Chinese) 2021, 52, 166–175.

    CAS  Google Scholar 

  65. Eom, J. Y.; Kim, S. I.; Ri, V.; Kim, C. The effect of polymeric binders in the sulfur cathode on the cycling performance for lithium-sulfur batteries. Chem. Commun. 2019, 55, 14609–14612.

    Article  CAS  Google Scholar 

  66. Feng, J.; Yi, H.; Lei, Z.; Wang, J.; Zeng, H.; Deng, Y.; Wang, C. A three-dimensional crosslinked chitosan sulfate network binder for high-performance Li-S batteries. J. Energy Chem. 2020, 56, 171–178.

    Article  Google Scholar 

  67. Wang, S.; Xue, L. L.; Zhou, X. Z.; Cui, J. X. “Solid-liquid” vitrimers based on dynamic boronic ester networks. Chinese J. Polym. Sci. 2021, 39, 1292–1298.

    Article  CAS  Google Scholar 

  68. Li, Z.; Zhou, H. Y.; Zhao, F. L.; Wang, T. X.; Ding, X. S.; Han, B. H.; Feng, W. Three-dimensional covalent organic frameworks as host materials for lithium-sulfur batteries. Chinese J. Polym. Sci. 2020, 38, 550–557.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52033011, 51873235 and 51973237), Natural Science Foundation of Guangdong Province, China (Nos. 2019B1515120038 and 2021A1515010417), Science and Technology Planning Project of Guangdong Province (No. 2020B010179001), and Industry-University-Research Collaboration Project of Zhuhai City (No. ZH22017001200004PWC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-Ping Zhang, Min-Zhi Rong or Ming-Qiu Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, ZH., Huang, ZX., Zhang, ZP. et al. Imparting Pulley Effect and Self-healability to Cathode Binder of Li-S Battery for Improvement of the Cycling Stability. Chin J Polym Sci 41, 95–107 (2023). https://doi.org/10.1007/s10118-022-2820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2820-3

Keywords

Navigation