Skip to main content

Advertisement

Log in

Simultaneously Improved Dielectric Constant and Breakdown Strength of PVDF-based Composites with Polypyrrole Nanowire Encapsuled Molybdenum Disulfide Nanosheets

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

High-performance dielectric polymer composites have received increasing attention due to their important applications in the field of energy storage. The rational structural design of hybrid fillers can lead to a balance between high dielectric constant and insulation in composites. In this work, novel hybrid fillers were fabricated by in situ synthesizing one-dimensional polypyrrole nanowires (PPynws) on the two-dimensional molybdenum disulfide (MoS2), which integrated the good ion polarization ability of PPynws and the high insulation and adjustable band gap of MoS2. Compared with the binary poly(vinylidene fluoride) (PVDF)/MoS2 composites, the PVDF/MoS2-PPynws composites exhibited remarkably improved dielectric constant and breakdown strength, while the dielectric loss was still maintained at a low level. An optimal ternary composite with 1 wt% MoS2-PPynws showed a high dielectric constant (15@1kHz), suppressed dielectric loss (0.027@1kHz), and high breakdown strength (422.1 MV/m). PPynws inducing strong interfacial polarization and the highly insulated MoS2 nanosheets extending the breakdown path mainly contributed to the synchronously enhanced dielectric constant and breakdown strength. This intriguing synthesis method of PVDF/MoS2-PPynws nanocomposite will open up new opportunities for fabricating nanostructured polymer composites to produce high dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tugui, C.; Ursu, C.; Sacarescu, L.; Asandulesa, M.; Stoian, G.; Ababei, G.; Cazacu, M. Stretchable energy harvesting devices: attempts to produce high-performance electrodes. ACS Sustain. Chem. Eng. 2017, 5, 7851–7858.

    Article  CAS  Google Scholar 

  2. Wi, D.; Kim, J.; Lee, H.; Kang, N. G.; Lee, J.; Kim, M. J.; Lee, J. S.; Ree, M. Finely tuned digital memory modes and performances in diblock copolymer devices by well-defined lamellar structure formation and orientation control. J. Mater. Chem. C 2016, 4, 2017–2027.

    Article  CAS  Google Scholar 

  3. Gao, L.; Yang, Y.; Xie, J.; Zhang, S.; Hu, J.; Zeng, R.; He, J.; Li, Q.; Wang, Q. Autonomous self-healing of electrical degradation in dielectric polymers using in situ electroluminescence. Matter 2020, 2, 451–463.

    Article  CAS  Google Scholar 

  4. Han, C.; Zhang, X.; Chen, D.; Ma, Y.; Zhao, C.; Yang, W. Enhanced dielectric properties of sandwich-structured biaxially oriented polypropylene by grafting hyper-branched aromatic polyamide as surface layers. J. Appl. Polym. Sci. 2020, 137, 48990.

    Article  CAS  Google Scholar 

  5. Wang, S.; He, X.; Chen, Q.; Chen, Y.; He, W.; Zhou, G.; Zhang, H.; Jin, X.; Su, X. Graphene-coated copper calcium titanate to improve dielectric performance of PPO-based composite. Mater. Lett. 2018, 233, 355–358.

    Article  CAS  Google Scholar 

  6. Yang, J.; Yang, X.; Pu, Z.; Chen, L.; Liu, X. Controllable high dielectric permittivity of poly(arylene ether nitriles)/copper phthalocyanine functional nanohybrid films via chemical interaction. Mater. Lett. 2013, 93, 199–202.

    Article  CAS  Google Scholar 

  7. Feng, Y.; Chen, P.; Zhu, Q.; Qin, B.; Li, Y.; Deng, Q.; Li, X.; Li, X.; Peng, C. Boron nitride nanosheet-induced low dielectric loss and conductivity in PVDF-based high-k ternary composites bearing ionic liquid. Mater. Today Commun. 2021, 26, 101896.

    Article  CAS  Google Scholar 

  8. Qiao, R.; Xu, H.; Chen, S.; Chen, S.; Luo, H.; Zhang, D. n-Type semiconductive polymer and poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) blends for energy storage applications. ACS Appl. Polym. Mater. 2021, 3, 879–887.

    Article  CAS  Google Scholar 

  9. Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 2021, 3, 123–172.

    Article  Google Scholar 

  10. Wang, R.; Xie, C.; Luo, S.; Xu, H.; Gou, B.; Zhou, J.; Yang, H. Sandwich-structured polymer composites with core-shell structure BaTiO3@SiO2@PDA significantly enhanced breakdown strength and energy density for a high-power capacitor. ACS Appl. Energy Mater. 2021, 4, 6135–6145.

    Article  CAS  Google Scholar 

  11. Gao, W.; Yao, M.; Yao, X. Achieving ultrahigh breakdown strength and energy storage performance through periodic interface modification in SrTiO3 thin film. ACS Appl. Mater. Interfaces 2018, 10, 28745–28753.

    Article  CAS  PubMed  Google Scholar 

  12. Xu, Y.; Guo, Y.; Liu, Q.; Yin, Y.; Bai, J.; Lin, L.; Tian, J.; Tian, Y. Enhanced energy density in Mn-doped (1-x)AgNbO3-xCaTiO3 lead-free antiferroelectric ceramics. J. Alloys Compd. 2020, 821, 153260.

    Article  CAS  Google Scholar 

  13. Yang, C.; Xie, X.; Lu, Y.; Qi, X. D.; Lei, Y. Z.; Yang, J. H.; Wang, Y. Improving the performance of dielectric nanocomposites by utilizing highly conductive rigid core and extremely low loss shell. J. Phys. Chem. C 2020, 124, 12883–12896.

    Article  CAS  Google Scholar 

  14. Chi, P. W.; Wei, D. H. Dielectric enhancement with low dielectric loss in textured ZnO films inserted with NiFe. J. Mater. Chem. C 2017, 5, 1394–1401.

    Article  CAS  Google Scholar 

  15. Meng, Q.; Li, Z.; Zhu, Y.; Feng, D.; Tan, H. Mechanical and X-band dielectric properties of vitrified bonded SiC composites. Mater. Des. 2016, 92, 18–22.

    Article  CAS  Google Scholar 

  16. Wu, W.; Huang, X.; Li, S.; Jiang, P.; Toshikatsu, T. Novel three-dimensional zinc oxide superstructures for high dielectric constant polymer composites capable of withstanding high electric field. J. Phys. Chem. C 2012, 116, 24887–24895.

    Article  CAS  Google Scholar 

  17. Jia, Q.; Huang, X.; Wang, G.; Diao, J.; Jiang, P. MoS2 nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications. J. Phys. Chem. C 2016, 120, 10206–10214.

    Article  CAS  Google Scholar 

  18. Maity, N.; Mandal, A.; Nandi, A. K. High dielectric poly(vinylidene fluoride) nanocomposite films with MoS2 using polyaniline interlinker via interfacial interaction. J. Mater. Chem. C 2017, 5, 12121–12133.

    Article  CAS  Google Scholar 

  19. Chen, H.; Li, X.; Yu, W.; Wang, J.; Shi, Z.; Xiong, C.; Yang, Q. Chitin/MoS2 nanosheet dielectric composite films with significantly enhanced discharge energy density and efficiency. Biomacromolecules 2020, 21, 2929–2937.

    Article  CAS  PubMed  Google Scholar 

  20. Feng, M.; Li, C.; He, M.; Huang, Y.; Luo, J. Poly(arylene ether nitrile) ternary dielectric composites modulated via polydopamine-assisted BaTiO3 decorating MoS2 sheets. Ceram. Int. 2020, 46, 19181–19190.

    Article  CAS  Google Scholar 

  21. Tahalyani, J.; Rahangdale, K. K.; K, B. The dielectric properties and charge transport mechanism of π-conjugated segments decorated with intrinsic conducting polymer. RSC Adv. 2016, 6, 69733–69742.

    Article  CAS  Google Scholar 

  22. Palsaniya, S.; Nemade, H. B.; Dasmahapatra, A. K. Graphene based PANI/MnO2 nanocomposites with enhanced dielectric properties for high energy density materials. Carbon 2019, 150, 179–190.

    Article  CAS  Google Scholar 

  23. Liu, J.; Tian, C.; Xiong, J.; Gao, B.; Dong, S.; Wang, L. Polypyrrole vapor phase polymerization on PVDF membrane surface for conductive membrane preparation and fouling mitigation. J. Chem. Technol. Biotechnol. 2017, 93, 683–689.

    Article  CAS  Google Scholar 

  24. Ogurtsov, N. A.; Bliznyuk, V. N.; Mamykin, A. V.; Kukla, O. L.; Piryatinski, Y. P.; Pud, A. A. Poly(vinylidene fluoride)/poly(3-methylthiophene) core-shell nanocomposites with improved structural and electronic properties of the conducting polymer component. Phys. Chem. Chem. Phys. 2018, 20, 6450–6461.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, L.; Lu, X.; Zhang, X.; Jin, L.; Xu, Z.; Cheng, Z. Y. All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Compos. Sci. Technol. 2018, 167, 285–293.

    Article  CAS  Google Scholar 

  26. Raghunathan, S. P.; Narayanan, S.; Poulose, A. C.; Joseph, R. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydr. Polym. 2017, 157, 1024–1032.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, L.; Yan, L.; Guo, Y.; Liu, H. C.; Huang, H.; Lin, H. L.; Bian, J.; Lu, Y. Chemically functionalized multi-walled CNTs induced phase behaviors of poly(vinylidene fluoride) nanocomposites and its dielectric properties. Synth. Met. 2020, 269, 116268.

    Article  CAS  Google Scholar 

  28. Chen, S.; Chen, S.; Qiao, R.; Xu, H.; Liu, Z.; Luo, H.; Zhang, D. Enhanced dielectric constant of PVDF-based nanocomposites with one-dimensional core-shell polypyrrole/sepiolite nanofibers. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106384.

    Article  CAS  Google Scholar 

  29. Pan, X. R.; Wang, M.; Qi, X. D.; Zhang, N.; Huang, T.; Yang, J. H.; Wang, Y. Fabrication of sandwich-structured PPy/MoS2/PPy nanosheets for polymer composites with high dielectric constant, low loss and high breakdown strength. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106032.

    Article  CAS  Google Scholar 

  30. Wu, Q. F.; He, K. X.; Mi, H. Y.; Zhang, X. G. Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template. Mater. Chem. Phys. 2007, 101, 367–371.

    Article  CAS  Google Scholar 

  31. O’Neill, A.; Khan, U.; Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 2012, 24, 2414–2421.

    Article  CAS  Google Scholar 

  32. Zhang, X.; Shen, Y.; Zhang, Q.; Gu, L.; Hu, Y.; Du, J.; Lin, Y.; Nan, C. W. J. A. M. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 2015, 27, 819–824.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y.; Wang, L.; Yuan, Q.; Chen, J.; Niu, Y.; Xu, X.; Cheng, Y.; Yao, B.; Wang, Q.; Wang, H. Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization. Nano Energy 2018, 44, 364–370.

    Article  CAS  Google Scholar 

  34. Zhang, X.; Zhang, J.; Liu, Z.; Robinson, C. Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures. Chem. Commun. 2004, 1852–1853.

  35. Yekeen, N.; Padmanabhan, E.; Idris, A. K.; Ibad, S. M. Surfactant adsorption behaviors onto shale from Malaysian formations: Influence of silicon dioxide nanoparticles, surfactant type, temperature, salinity and shale lithology. J. Pet. Sci. Eng. 2019, 179, 841–854.

    Article  CAS  Google Scholar 

  36. Quilty, C. D.; Housel, L. M.; Bock, D. C.; Dunkin, M. R.; Wang, L.; Lutz, D. M.; Abraham, A.; Bruck, A. M.; Takeuchi, E. S.; Takeuchi, K. J.; Marschilok, A. C. Ex situ and operando XRD and XAS analysis of MoS2: a lithiation study of bulk and nanosheet materials. ACS Appl. Energy Mater. 2019, 2, 7635–7646.

    Article  CAS  Google Scholar 

  37. Wang, T.; Zhong, W.; Ning, X.; Wang, Y.; Yang, W. Facile route to hierarchical conducting polymer nanostructure: synthesis of layered polypyrrole network plates. J. Appl. Polym. Sci. 2009, 114, 3855–3862.

    Article  CAS  Google Scholar 

  38. Li, X.; Liu, L.; Liu, T.; Zhang, D.; An, C.; Yang, F. An active electro-Fenton PVDF/SS/PPy cathode membrane can remove contaminant by filtration and mitigate fouling by pairing with sacrificial iron anode. J. Membr. Sci. 2020, 605, 118100.

    Article  CAS  Google Scholar 

  39. Cai, K.; Hang, X.; Zhao, Y.; Zong, R.; Zeng, F.; Guo, D. A green route to a low cost anisotropic MoS2/poly(vinylidene fluoride) nanocomposite with ultrahigh electroactive phase and improved electrical and mechanical properties. ACS Sustain. Chem. Eng. 2018, 6, 5043–5052.

    Article  CAS  Google Scholar 

  40. Xing, C.; Zhao, L.; You, J.; Dong, W.; Cao, X.; Li, Y. Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J. Phys. Chem. B 2012, 116, 8312–8320.

    Article  CAS  PubMed  Google Scholar 

  41. Fu, Y.; Wang, Y.; Wang, S.; Gao, Z.; Xiong, C. Enhanced breakdown strength and energy storage of PVDF-based dielectric composites by incorporating exfoliated mica nanosheets. Polym. Compos. 2018, 40, 2088–2094.

    Article  CAS  Google Scholar 

  42. Yang, J. H.; Xie, X.; He, Z. Z.; Lu, Y.; Qi, X. D.; Wang, Y. Graphene oxide-tailored dispersion of hybrid barium titanate@polypyrrole particles and the dielectric composites. Chem. Eng. J. 2019, 355, 137–149.

    Article  CAS  Google Scholar 

  43. Xie, X.; Yang, C.; Qi, X. D.; Yang, J. H.; Zhou, Z. W.; Wang, Y. Constructing polymeric interlayer with dual effects toward high dielectric constant and low dielectric loss. Chem. Eng. J. 2019, 366, 378–389.

    Article  CAS  Google Scholar 

  44. Li, H.; Yao, B.; Zhou, Y.; Xu, W.; Ren, L.; Ai, D.; Wang, Q. Bilayer-structured polymer nanocomposites exhibiting high breakdown strength and energy density via interfacial barrier design. ACS Appl. Energy Mater. 2020, 3, 8055–8063.

    Article  CAS  Google Scholar 

  45. Zhu, Y.; Zhu, Y.; Huang, X.; Chen, J.; Li, Q.; He, J.; Jiang, P. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 2019, 9, 1901826.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51673159) and the Youth Science and Technology Innovation Team of Sichuan Province of Functional Polymer Composites (No. 2021JDTD0009). SEM characterizations were supported by the Analytical and Testing Center of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Hui Yang or Yong Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2693_MOESM1_ESM.pdf

Simultaneously Improved Dielectric Constant and Breakdown Strength of PVDF-based Composites with Polypyrrole Nanowire Encapsuled Molybdenum Disulfide Nanosheets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, HB., Pan, XR., Yang, JH. et al. Simultaneously Improved Dielectric Constant and Breakdown Strength of PVDF-based Composites with Polypyrrole Nanowire Encapsuled Molybdenum Disulfide Nanosheets. Chin J Polym Sci 40, 515–525 (2022). https://doi.org/10.1007/s10118-022-2693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2693-5

Keywords

Navigation