Skip to main content
Log in

Enhancing the Crystallization Performance of Poly(L-lactide) by Intramolecular Hybridizing with Tunable Self-assembly-type Oxalamide Segments

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, hydroxyl-terminated oxalamide compounds N1,N2-bis(2-hydroxyethyl)oxalamide (OXA1) and N1, N1′-(ethane-1,2-diyl)bis(N2-(2-hydroxyethyl)oxalamide (OXA2) were synthesized to initiate the ring-opening polymerization of L-lactide for preparation of oxalamide-hybridized poly(L-lactide) (PLAOXA), i.e., PLAOXA1 and PLAOXA2. The crystallization properties of PLA were improved by the self-assembly of the oxalamide segments in PLAOXA which served as the initial heterogeneous nuclei. The crystal growth kinetics was studied by Hoffman-Lauritzen theory and it revealed that the nucleation energy barrier of PLAOXA1 and PLAOXA2 was lower than that of PLA. Consequently, PLAOXA could crystallize much faster than PLA, accompanied with a decrease in spherulite size and half-life crystallization time by 74.8% and 86.5% (T = 125 °C), respectively. In addition, the final crystallinity of PLAOXA1 and PLAOXA2 was 6 and 8 times higher, respectively, in comparison with that of neat PLA under a controlled cooling rate of 10 °C/min. The results demonstrate that the hybridization of oxalamide segments in PLA backbone will serve as the self-heteronucleation for promoting the crystallization rate. The higher the content of oxalamide segments (PLAOXA2 compared with PLAOXA1) is, the stronger the promotion effect will be. Therefore, this study may provide a universal approach by hybridizing macromolecular structure to facilitate the crystallization of semi-crystalline polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rankin, J. European parliament votes to ban single-use plastics. The Guardian 2019, 27.

  2. Trache, D.; Hussin, M. H.; Haafiz, M. K. M.; Thakur, V. K. Recent progress in cellulose nanocrystals: sources and production. Nanoscale 2017, 9, 1763–1786.

    Article  CAS  PubMed  Google Scholar 

  3. Gu, J.; Peng, X.; Peng, C.; Lei, Z.; Wang, H.; Dai, L.; Song, L.; Huang, Y.; Zhang, J.; Tao, C. Functionalization of biodegradable PLA non-woven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 5968.

    Article  CAS  PubMed  Google Scholar 

  4. Tenn, N.; Follain, N.; Soulestin, J.; Crétois, R.; Bourbigot, S.; Marais, S. Effect of nanoclay hydration on barrier properties of PLA/montmorillonite based nanocomposites. J. Phys. Chem. C 2013, 117, 12117–12135.

    Article  CAS  Google Scholar 

  5. Saiwaew, R.; Suppakul, P.; Boonsupthip, W.; Pechyen, C.; Saiwaew, R. Development and characterization of poly(lactic acid)/fish water soluble protein composite sheets: a potential approach for biodegradable packaging. Energy Procedia 2014, 56, 280–298.

    Article  CAS  Google Scholar 

  6. Chen, Y.; Wang, W.; Qiu, Y.; Li, L.; Qian, L.; Xin, F. Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites. Polym. Degrad. Stab. 2017, 140, 166–175.

    Article  CAS  Google Scholar 

  7. Zhang, X.; Meng, L.; Li, G.; Liang, N.; Zhang, J.; Zhu, Z.; Wang, R. Effect of nucleating agents on the crystallization behavior and heat resistance of poly(l-lactide). J. Appl. Polym. Sci. 2016, 133, 42999.

    Google Scholar 

  8. Zhu, B.; Wang, Y.; Liu, H.; Ying, J.; Liu, C.; Shen, C. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos. Sci. Technol. 2020, 190, 108048.

    Article  CAS  Google Scholar 

  9. Chen, P.; Lian, H.; Shih, Y.; Chenwei, S.; Jeng, R. Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater. Chem. Phys. 2017, 196, 249–255.

    Article  CAS  Google Scholar 

  10. Xu, P.; Cui, Z.; Ruan, G.; Ding, Y. Enhanced crystallization kinetics of PLLA by ethoxycarbonyl ionic liquid modified graphene. Chinese J. Polym. Sci. 2019, 37, 243–252.

    Article  CAS  Google Scholar 

  11. Bhoje Gowd, E.; Nagendra, B.; Sivaprasad, V. P.; Sijla Rosely, C. Influence of boron nitride nanosheets on the crystallization and polymorphism of poly(L-lactide). J. Phys. Chem. B 2018, 122, 6442–6451.

    Article  PubMed  CAS  Google Scholar 

  12. Nam, J. Y.; Okamoto, M.; Okamoto, H.; Nakano, M.; Usuki, A.; Matsuda, M. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 2006, 47, 1340–1347.

    Article  CAS  Google Scholar 

  13. Pan, P.; Shan, G.; Bao, Y. Enhanced nucleation and crystallization of poly(L-lactic acid) by immiscible blending with poly(vinylidene fluoride). Ind. Eng. Chem. Res. 2014, 53, 3148–3156.

    Article  CAS  Google Scholar 

  14. Yuan, B. C.; Zou, L. G. Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(L-lactide) as an efficient nucleating agent. Thermochim. Acta 2014, 577, 41–45.

    Article  CAS  Google Scholar 

  15. Pan, P.; Yang, J.; Shan, G.; Bao, Y.; Weng, Z.; Inoue, Y. Nucleation effects of nucleobases on the crystallization kinetics of poly(L-lactide). Macromol. Mater. Eng. 2012, 297, 670–679.

    Article  CAS  Google Scholar 

  16. Shi, Y.; Shao, L.; Yang, J.; Huang, T.; Wang, Y.; Zhang, N.; Wang, Y. Highly improved crystallization behavior of poly(L-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts. Polym. Adv. Technol. 2013, 24, 42–50.

    Article  CAS  Google Scholar 

  17. Xie, Q.; Han, L.; Shan, G.; Bao, Y.; Pan, P. Polymorphic crystalline structure and crystal morphology of eenantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain. Chem. Eng. 2016, 4, 2680–2688.

    Article  CAS  Google Scholar 

  18. Ma, P.; Xu, Y.; Wang, D.; Dong, W.; Chen, M. Rapid crystallization of poly(lactic acid) by using tailor-made oxalamide derivatives as novel soluble-type nucleating agents. Ind. Eng. Chem. Res. 2014, 53, 12888–12892.

    Article  CAS  Google Scholar 

  19. Ma, P.; Xu, Y.; Shen, T.; Dong, W.; Chen, M.; Lemstra, P. J. Tailoring the crystallization behavior of poly(L-lactide) with self-assembly-type oxalamide compounds as nucleators: 1. Effect of terminal configuration of the nucleators. Eur. Polym. J. 2015, 70, 400–411.

    Article  CAS  Google Scholar 

  20. Kamal, M. R.; Khoshkava, V. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr. Polym. 2015, 123, 105–114.

    Article  CAS  PubMed  Google Scholar 

  21. Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecules 2011, 44, 1233–1237.

    Article  CAS  Google Scholar 

  22. Bai, H.; Huang, C.; Xiu, H.; Zhang, Q.; Fu, Q. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 2014, 55, 6924–6934.

    Article  CAS  Google Scholar 

  23. Shen, T.; Xu, Y.; Cai, X.; Ma, P.; Dong, W.; Chen, M. Enhanced crystallization kinetics of poly(lactide) with oxalamide compounds as nucleators: effect of spacer length between the oxalamide moieties. RSC Adv. 2016, 6, 48365–48374.

    Article  CAS  Google Scholar 

  24. Bao, J.; Chang, X.; Xie, Q.; Yu, C.; Shan, G.; Bao, Y.; Pan, P. Preferential formation of β-form crystals and temperature-dependent polymorphic structure in supramolecular poly(L-lactic acid) bonded by multiple hydrogen bonds. Macromolecules 2017, 50, 8619–8630.

    Article  CAS  Google Scholar 

  25. Kodal, M.; Sirin, H.; Ozkoc, G. Non-isothermal crystallization kinetics of PEG plasticized PLA/G-POSS nanocomposites. Polym. Compos. 2017, 38, 1378–1389.

    Article  CAS  Google Scholar 

  26. Dave, V.; Srivastava, P.; Sharma, S.; Bajaj, J.; Tak, K. PEGylated PLA-Phospholipon 90G complex hybrid nanoparticles loaded with etoricoxib for effective treatment pain relief potential. Int. J. Polym. Mater. Polym. Biomater. 2019, 69, 640–652.

    Article  CAS  Google Scholar 

  27. Xia, S.; Liu, X.; Wang, J.; Kan, Z.; Chen, H.; Fu, W.; Li, Z. Role of poly(ethylene glycol) grafted silica nanoparticle shape in toughened PLA-matrix nanocomposites. Compos. Part B 2019, 168, 398–405.

    Article  CAS  Google Scholar 

  28. Södergård, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 2002, 27, 1123–1163.

    Article  Google Scholar 

  29. Sijbrandi, N. J.; Kimenai, A. J.; Mes, E. P. C.; Broos, R.; Bar, G.; Rosenthal, M.; Odarchenko, Y. I.; Ivanov, D. A.; Feijen, J.; Dijkstra, P. J. Synthesis, morphology and properties of segmented poly(ether ester amide)s comprising uniform glycine or β-alanine extended bisoxalamide hard segments. Polymer 2012, 53, 4033–4044.

    Article  CAS  Google Scholar 

  30. Harings, J. A.; van Asselen, O.; Graf, R.; Broos, R.; Rastogi, S. The role of superheated water on the crystallization of N,N′-1, 2-ethanediyl-bis(6-hydroxy-hexanamide): Implications on crystallography and phase transitions. Cryst. Growth Des. 2008, 8, 2469–2477.

    Article  CAS  Google Scholar 

  31. Tsuji, H. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials 2003, 24, 537–547.

    Article  CAS  PubMed  Google Scholar 

  32. Takahiko, K.; Nelly, R.; Go, M.; Koji, N.; Toshiji, K.; Mitsuru, N.; Hirotaka, O.; Jumpei, K.; Arimitsu, U.; Nobutaka, H. Crystallization and melting behavior of poly(l-lactic acid). Macromolecules 2013, 40, 9463–9469.

    Google Scholar 

  33. Zhang, R. C.; Sun, D.; Lu, A.; Zhong, M.; Xiong, G.; Wan, Y. Equilibrium melting temperature of polymorphic poly(L-lactide) and its supercooling dependence on growth kinetics. Polymers 2017, 9, 625.

    Article  PubMed Central  CAS  Google Scholar 

  34. Dobreva, A.; Gutzow, I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J. Non-Cryst. Solids 1993, 162, 13–25.

    Article  CAS  Google Scholar 

  35. Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Phys. Chem. 1941, 9, 177–184.

    Article  CAS  Google Scholar 

  36. Tsuji, H.; Yamashita, Y. Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(D-lactide) and poly(L-lactide) cores. Polymer 2014, 55, 6444–6450.

    Article  CAS  Google Scholar 

  37. Shen, T.; Xu, Y.; Wang, L.; Dong, W.; Chen, M.; Ma, P. Highperformance poly(lactide) composites by construction of network-like shish-kebab crystals. RSC Adv. 2016, 6, 71046–71051.

    Article  CAS  Google Scholar 

  38. Hoffman, J. D. Theoretical aspects of polymer crystallization with chain folds: bulk polymers. Polym. Eng. Sci. 1964, 4, 315–362.

    Article  CAS  Google Scholar 

  39. Shen, T.; Ma, P.; Yu, Q.; Dong, W.; Chen, M. The effect of thermal history on the fast crystallization of poly(L-lactide) with soluble-type nucleators and shear flow. Polymers 2016, 8, 431.

    Article  PubMed Central  CAS  Google Scholar 

  40. Tsuji, H.; Miyase, T.; Tezuka, Y.; Saha, S. K. Physical properties, crystallization, and spherulite growth of linear and 3-arm poly(L-lactide)s. Biomacromolecules 2007, 100, 944–947.

    Google Scholar 

  41. Zhang, M.; Guo, B. H.; Xu, J. A review on polymer crystallization theories. Crystals 2017, 7, 4.

    Article  CAS  Google Scholar 

  42. Tang, X.; Chen, W.; Li, L. The tough journey of polymer crystallization: battling with chain flexibility and connectivity. Macromolecules 2019, 52, 3575–3591.

    Article  CAS  Google Scholar 

  43. Okada, K.; Watanabe, K.; Urushihara, T.; Toda, A.; Hikosaka, M. Role of epitaxy of nucleating agent (NA) in nucleation mechanism of polymers. Polymer 2007, 48, 401–408.

    Article  CAS  Google Scholar 

  44. Legras, R.; Mercier, J.; Nield, E. Polymer crystallization by chemical nucleation. Nature 1983, 304, 432.

    Article  CAS  Google Scholar 

  45. Xing, Q.; Li, R.; Dong, X.; Luo, F.; Kuang, X.; Wang, D.; Zhang, L. Enhanced crystallization rate of poly(L-lactide) mediated by a hydrazide compound: nucleating mechanism study. Macromol. Chem. Phys. 2015, 216, 1134–1145.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51873082), the MOE & SAFEA 111 Project (No. B13025), the Opening Project of Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics (Beijing Technology and Business University) (No. QETHSP2019003), and the Postgraduate Research & Practice Innovation Program of Jiangnan University (No. JNKY19_020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Xuan Weng or Pi-Ming Ma.

Electronic Supplementary Information

10118_2020_2461_MOESM1_ESM.pdf

Enhancing the Crystallization Performance of Poly(L-lactide) by Intramolecular Hybridizing with Tunable Self-assembly-type Oxalamide Segments

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, MM., Yang, WJ., Niu, DY. et al. Enhancing the Crystallization Performance of Poly(L-lactide) by Intramolecular Hybridizing with Tunable Self-assembly-type Oxalamide Segments. Chin J Polym Sci 39, 122–132 (2021). https://doi.org/10.1007/s10118-020-2461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2461-3

Keywords

Navigation