Skip to main content
Log in

The toughening behavior of the PP/POE alternating multilayered blends under EWF and impact tensile methods

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The multilayered polypropylene (PP) and poly(ethylene-co-octene) (POE) sheets were prepared by the micro-layered co-extrusion system. The essential work of fracture (EWF) and the impact tensile methods have been successfully used to evaluate the toughening behaviors of the PP/POE multilayered blends under quasi-static and dynamic uniaxial tensile stress, respectively. The experimental results indicate that the multilayered structure plays a key role in the toughening behaviors. On increasing the layer number of the multilayered blends, the specific essential work of fracture, w e, increases obviously. As for the βw p, there is no obvious variation in the multilayered blends with low POE content (6.79%), however, obvious enhancement is observed with increasing the layer number of the high POE content multilayered blends (16.57%). Compared with the conventional blends, the multilayered blends with 6.79% POE content are effective to increase the value of we. Additionally, the multilayered blends with high layer numbers present absolute advantage in improving the impact tensile values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geng, C., Su, J., Han, S. and Fu, Q., Polymer, 2013, 54(13): 3392

    Article  CAS  Google Scholar 

  2. Zhang, L., Huang, R., Li, L.B. and Wang, G., J. Appl. Polym. Sci., 2002, 83(9): 1870

    Article  Google Scholar 

  3. Zhang, L., Huang, R., Li, L.B., Wang, G. and Zhang, X.L., J. Appl. Polym. Sci., 2002, 86(8): 2085

    Article  CAS  Google Scholar 

  4. Lee, H., Fasulo, P.D., Rodgers, W.R. and Paul, D.R., Polymer, 2005, 46(25): 11673

    Article  CAS  Google Scholar 

  5. Wang, J.F., Wang, C.L., Zhang, X.L. and Wu, H., RSC Adv., 2014, 4(39): 20297

    Article  CAS  Google Scholar 

  6. Currey, J.D., Proc. R. Soc. London. Ser. B., 1977, 196(1125): 443

    Article  Google Scholar 

  7. Jackson, A. and Vincent, J.R., Proc. R. Soc. London. Ser. B., 1988, 234(1277): 415

    Article  Google Scholar 

  8. Wang, R.Z., Wen, H.B., Cui, F.Z. and Zhang, H.B., J. Mater. Sci., 1995, 30(9): 2299

    Article  CAS  Google Scholar 

  9. Li, C.H., Yang, S., Wang, J.F., Guo, J.W. and Wu, H., RSC Adv., 2014, 4(98): 55119

    Article  CAS  Google Scholar 

  10. Bonderer, L.J., Studart, A.R. and Gauckler, L.J., Science, 2008, 319(5866): 1069

    Article  CAS  Google Scholar 

  11. Lin, T.H., Huang, W.H., Jun, I.K. and Pen, J., J. Colloid Interface Sci., 2010, 344(2): 272

    Article  CAS  Google Scholar 

  12. Rafael, L., Frédéric, H.L.M., Davi, M.M. and André, R.S., Compos. Sci. Technol., 2012, 72(3): 435

    Article  Google Scholar 

  13. Bonderer, L.J., Feldman, K. and Gauckler, L., Compos. Sci. Technol., 2010, 70(13): 1966

    Article  CAS  Google Scholar 

  14. Bonderer, L.J., Feldman, K. and Gauckler, L., Compos. Sci. Technol., 2010, 70(13): 1958

    Article  CAS  Google Scholar 

  15. Corni, I., Harvey, T.J., Wharton, J.A., Stokes, K.R., Walsh, F.C. and Wood, R.J.K., Bioinspir. Biomim., 2012, 7(3): 031001

    Article  CAS  Google Scholar 

  16. Mueller, C.D., Nazarenko, S., Ebeling, T., Schuman, T.L., Hiltner, A. and Baer, E., Polym. Eng. Sci., 1997, 37(2): 355

    Article  CAS  Google Scholar 

  17. Xu, S.X., Wang, M., Li, J. and Guo, S.Y., Polymer, 2008, 49(22): 4861

    Article  CAS  Google Scholar 

  18. Chen, B.S., Gao, W.L., Shen, J.B. and Guo. S.Y., Compos. Sci. Technol., 2014, 93: 54

    Article  CAS  Google Scholar 

  19. Gupta, M., Lin, Y.J., Taneisha, D., David, A.S. and Baer, E., Macromolecules, 2010, 43(9): 4230

    Article  CAS  Google Scholar 

  20. Tangirala, R., Baer, E., Hiltner, A. and Weder, C., Adv. Funct. Mater., 2004, 14(6): 595

    Article  CAS  Google Scholar 

  21. Baer, E., Hiltner, A. and Keith, H., Science, 1987, 235(4792): 1015

    Article  CAS  Google Scholar 

  22. Burt, T.M., Jordan A.M. and Korley, T.J.K., ACS Appl. Mater. Inter., 2012, 4(10): 5155

    Article  CAS  Google Scholar 

  23. Haderski, D., Sung, K., Hiltner, A. and Baer, E., J. Appl. Polym. Sci., 1994, 52(2): 121

    Article  CAS  Google Scholar 

  24. Sun, X., Shen, H.W., Xie, B.H. and Yang, M.B., Polymer, 2011, 52(2): 564

    Article  CAS  Google Scholar 

  25. Wang, L., Xie, B.H., Yang, W., Shen, Y.X. and Yang, M.B., J. Elast. Plast., 2010, 42(2): 101

    Article  Google Scholar 

  26. Fu, Z., Dai, W.L., Yu, H.M., Zou, X.X. and Chen, B., J. Mater. Sci., 2011, 46(5): 1272

    Article  CAS  Google Scholar 

  27. Cotterell, B. and Reddel, J.K., Int. J. Fract., 1977, 13(3): 267

    CAS  Google Scholar 

  28. Broberg, K.B.J., Mech. Phys. Solids, 1975, 23(3): 215

    Article  Google Scholar 

  29. Karger-Kocsisa, J., Bárányb, T. and Moskalac, E.J., Polymer, 2003, 44(19): 5691

    Article  Google Scholar 

  30. Karger-kocsis, J. and Bárány, T., Polym. Eng. Sci., 2002, 42(7): 1410

    Article  CAS  Google Scholar 

  31. Wong, J.S.S., Ferrer-Balas, D., Li, R.K.Y. and Mai, Y.W., Acta Mater., 2003, 51(16): 4929

    Article  CAS  Google Scholar 

  32. Ganß, M., Staudinger, U., Thunga, M. and Schneider, K., Polymer, 2012, 53(10): 2085

    Article  Google Scholar 

  33. Gray, R. “Test protocol for essential work of fracture”, Les Diablerets: ESIS TC-4 Group, 1998

    Google Scholar 

  34. Arkhireyeva, A. and Hashemi, S., Polymer, 2002, 43(2): 289

    Article  CAS  Google Scholar 

  35. Martinez, A.B., Segovia, A. and Gamezperez, J., Eng. Fract. Mech., 2010, 77(14): 2654

    Article  Google Scholar 

  36. Cotterell, B. and Reddell, J.K., Int. J. Fract., 1977, 13(3): 267

    CAS  Google Scholar 

  37. Bárány, T. and Czigány, T., Prog. Polym. Sci., 2010, 35(10): 1257

    Article  Google Scholar 

  38. Gong, G., Xie, B.H., Yang, W., Li, Z.M. and Yang, M.B., Polym. Test., 2005, 24(4): 410

    Article  CAS  Google Scholar 

  39. Martinez, A.B., Gamezperez, J., Sanchezsoto, M., Velasco, J.I. and Maspoch, M.L., Eng. Fail. Anal., 2009, 16(8): 2604

    Article  CAS  Google Scholar 

  40. Ji, B. and Gao, H.J., Mater. Sci. Eng., 2004, 366(1): 96

    Article  Google Scholar 

  41. Jager, I. and Fratzl, P., Biophys. J., 2004, 79(4): 1737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Wu  (吴宏) or Shao-yun Guo  (郭少云).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 51273132, 51227802 and 51121001) and Program for New Century Excellent Talents in Universities (No. NCET-13-0392).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ch., Wang, Jf., Guo, Jw. et al. The toughening behavior of the PP/POE alternating multilayered blends under EWF and impact tensile methods. Chin J Polym Sci 33, 1477–1490 (2015). https://doi.org/10.1007/s10118-015-1692-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-015-1692-1

Keywords

Navigation