Skip to main content

Advertisement

Log in

The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell-derived exosomes against Parkinson’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic, progressive, neurodegenerative disease. The predominant pathology of PD is the loss of dopaminergic cells in the substantia nigra. Cell transplantation is a strategy with significant potential for treating PD; mesenchymal stem cells (MSCs) are a tremendous therapeutic cell source because they are easily accessible. MSC-derived exosomes with potential protective action in lesioned sites serve as an essential promoter of neuroprotection, and neurodifferentiation, by modulating neural stem cells, neurons, glial cells, and axonal growth in vitro and in vivo environments. The biological properties of MSC-derived exosomes have been proposed as a beneficial tool in different pathological conditions, including PD. Therefore, in this review, we assort the current understanding of MSC-derived exosomes as a new possible therapeutic strategy for PD by providing an overview of the potential role of miRNAs as a component of exosomes in the cellular and molecular basis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This is a review article. There is no consent to publish applicable.

Abbreviations

PD :

Parkinson’s disease

MSCs :

mesenchymal stem cells

miRNAs :

microRNAs

MAO-B :

monoamine oxidase-B

COMT :

catechol-o-methyltransferase

EVs :

membrane-bound extracellular vesicles

CCV :

clathrin-coated vesicles

MVBs :

multi-vesicular bodies

ILVs :

intraluminal vesicles

TGN :

trans-Golgi Network

ESCRT :

endosomal sorting complex required for transport

SNAREs :

soluble N-ethylmaleimide sensitive factor attachment protein receptors

LncRNA :

long non-coding RNA

CNS :

central nervous system

CNS :

central nervous system

NPCs :

neural progenitor cells

siRNAs :

short interfering RNAs

BBB :

blood-brain barrier

BMECs :

brain microvascular endothelial cells

GluR :

glutamate receptors R

L1CAM :

L1 cell adhesion molecule

LBs :

Lewy bodies

:

amyloid beta

MHC-1 :

major histocompatibility complex I

SNpc :

substantia nigra pars compacta

PEDF :

pigment epithelium-derived factor

Cys-C :

cystatin-C

BDNF :

brain-derived neurotrophic factor

IGF-1 :

insulin-like growth factor 1

VEGF :

vascular endothelial growth factor

MMPs :

matrix metalloproteinases

UTR :

untranslated region

ORF :

open reading frame

TLR :

toll-like receptor

CSF :

cerebrospinal fluid

ROCK1 :

Rho-associated kinase 1

SNCA :

synuclein alpha

MPP +  :

1-methyl-4-phenylpyridinium

NK :

neural killer

IFN-γ :

interferon gamma

IL :

interleukin

IRS-1 :

insulin receptor substrate 1

MDS-UPDRS :

Movement Disorders Society Unified Parkinson’s Disease Rating Scale

AMSCs :

adipose mesenchymal stem cells

MALAT1 :

metastasis-associated lung adenocarcinoma transcript 1

UMSCs :

umbilical cord mesenchymal stem cells

HDAC :

histone deacetylase

References

  1. Mizuno Y et al (1995) Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochim Biophys Acta (BBA)- Mol Basis Dis 1271(1):265–274

    Article  Google Scholar 

  2. Rizek P, Kumar N, Jog MS (2016) An update on the diagnosis and treatment of Parkinson disease. CMAJ 188(16):1157–1165

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen H, Ritz B (2018) The search for environmental causes of Parkinson’s disease: moving forward. J Parkinsons Dis 8(s1):S9–S17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fox SH et al (2018) International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33(8):1248–1266

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323(6):548–560

    Article  PubMed  Google Scholar 

  6. Yu H et al (2020) Potential roles of exosomes in Parkinson’s disease: from pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol 8:86

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barbuti PA et al (2021) Recent advances in the development of stem-cell-derived dopaminergic neuronal transplant therapies for Parkinson’s disease. Mov Disord 36(8):1772–1780

    Article  PubMed  Google Scholar 

  8. Yuan O et al (2019) Exosomes derived from human primed mesenchymal stem cells induce mitosis and potentiate growth factor secretion. Stem Cells Dev 28(6):398–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fayazi N et al (2021) Stem cell-derived exosomes: a new strategy of neurodegenerative disease treatment. Mol Neurobiol 58(7):3494–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goetzl L et al (2018) Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury. Ann Clin Transl Neurol 5(1):4–10

    Article  CAS  PubMed  Google Scholar 

  11. Gui Y et al (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6(35):37043

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jin Q et al (2021) Extracellular vesicles: novel roles in neurological disorders. Stem Cells Int 2021:1–16

    Google Scholar 

  13. Koong AC, Chen EY, Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues. Can Res 54(6):1425–1430

    CAS  Google Scholar 

  14. Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  PubMed  Google Scholar 

  15. Urbanelli L et al (2013) Signaling pathways in exosomes biogenesis, secretion and fate. Genes 4(2):152–170

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478):eaau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ostrowski M et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30

    Article  CAS  PubMed  Google Scholar 

  18. Sluijter JP (2013) MicroRNAs in cardiovascular regenerative medicine: directing tissue repair and cellular differentiation. Int Schl Res Notices 2013

  19. Ma Y et al (2019) Exosomes released from neural progenitor cells and induced neural progenitor cells regulate neurogenesis through miR-21a. Cell Commun Signal 17(1):1–10

    Article  Google Scholar 

  20. Gao G et al (2019) Glutaminase C regulates microglial activation and pro-inflammatory exosome release: relevance to the pathogenesis of Alzheimer’s disease. Front Cell Neurosci 13:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emmanouilidi A et al (2019) Oncogenic and non-malignant pancreatic exosome cargo reveal distinct expression of oncogenic and prognostic factors involved in tumor invasion and metastasis. Proteomics 19(8):1800158

    Article  Google Scholar 

  22. Mathivanan S et al (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920

    Article  CAS  PubMed  Google Scholar 

  23. Fu S et al (2020) Exosome engineering: current progress in cargo loading and targeted delivery. NanoImpact 20:100261

    Article  Google Scholar 

  24. Gao G et al (2020) Glutaminase 1 regulates neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front Immunol 11:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma Y et al (2019) Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal–regulated kinase pathways. Neurobiol Dis 124:322–334

    Article  CAS  PubMed  Google Scholar 

  26. Ludwig N et al (2019) Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 20(19):4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gilligan KE et al (2017) Engineering exosomes for cancer therapy. Int J Mol Sci 18(6):1122

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jakubec M et al (2020) Plasma-derived exosome-like vesicles are enriched in lyso-phospholipids and pass the blood-brain barrier. PLoS ONE 15(9):e0232442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao Y et al (2020) Paracrine interactions involved in human induced pluripotent stem cells differentiation into chondrocytes. Curr Stem Cell Res Ther 15(3):233–242

    Article  CAS  PubMed  Google Scholar 

  30. Zolnik BS et al (2010) Minireview: nanoparticles and the immune system. Endocrinology 151(2):458–465

    Article  CAS  PubMed  Google Scholar 

  31. Dézsi L et al (2014) Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: comparison of the porcine and rat responses. J Control Release 195:2–10

    Article  PubMed  Google Scholar 

  32. Gamucci O et al (2014) Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings 4(1):139–159

    Article  Google Scholar 

  33. D’Anca M et al (2019) Exosome determinants of physiological aging and age-related neurodegenerative diseases. Front Aging Neurosci 11:232

    Article  PubMed  PubMed Central  Google Scholar 

  34. He M et al (2021) Diagnostic and therapeutic potential of exosomal microRNAs for neurodegenerative diseases. Neural Plast 2021:1–13

    Article  CAS  Google Scholar 

  35. Chen CC et al (2016) Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng 9(4):509–529

    Article  CAS  PubMed  Google Scholar 

  36. Liu R et al (2021) Mesenchymal stem cell-derived exosomes for treatment of ischemic stroke. Curr Stem Cell Res Ther 12:561

    Article  CAS  Google Scholar 

  37. Wang X et al (2020) The role of exosomal microRNAs and oxidative stress in neurodegenerative diseases. Oxid Med Cell Longev 2020:17

    Article  Google Scholar 

  38. Ebrahimi M et al (2020) Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 11(1):1–13

    Article  Google Scholar 

  39. Yuan L, Li J-Y (2019) Exosomes in Parkinson’s disease: current perspectives and future challenges. ACS Chem Neurosci 10(2):964–972

    Article  CAS  PubMed  Google Scholar 

  40. Pinnell JR, Cui M, Tieu K (2021) Exosomes in Parkinson disease. J Neurochem 157(3):413–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu L et al (2020) Targeted exosome coating gene-chem nanocomplex as “nanoscavenger” for clearing α-synuclein and immune activation of Parkinson’s disease. Sci Adv 6(50):eaba3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D’Anca M et al (2019) Exosome determinants of physiological aging and age-related neurodegenerative diseases. Front Aging Neurosci 11:232

    Article  PubMed  PubMed Central  Google Scholar 

  43. Danzer KM et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7(1):1–18

    Article  Google Scholar 

  44. Chivet M et al (2014) Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles 3(1):24722

  45. Emmanouilidou E et al (2010) Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  47. Harischandra DS et al (2018) Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson’s disease: Relevance to α-synuclein misfolding in metal neurotoxicity. Neurotoxicology 64:267–277

    Article  CAS  PubMed  Google Scholar 

  48. Vallelunga A et al (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci 8:156

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dos Santos MCT et al (2018) miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early-stage Parkinson’s disease. Oncotarget 9(25):17455

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li D et al (2018) Effect of regulatory network of exosomes and microRNAs on neurodegenerative diseases. Chin Med J. 131(18):2216–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan L et al (2015) Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 51(3):1249–1262

  52. Batistela MS et al (2017) An overview of circulating cell-free microRNAs as putative biomarkers in Alzheimer’s and Parkinson’s Diseases. Int J Neurosci 127(6):547–558

  53. Xin H et al (2017) MicroRNA-17–92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48(3):747–753

  54. Baglio SR et al (2015) Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 6(1):1–20

    Article  CAS  Google Scholar 

  55. Vilaça-Faria H et al (2019) Mesenchymal stem cells-derived exosomes: a new possible therapeutic strategy for Parkinson’s disease? Cells. 8(2):118

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xin H et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cellscontributes to neurite outgrowth. Stem Cells 30(7):1556–1564

  57. Martins M et al (2011) Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PloS One 6(10):e25443

  58. Alvarez-Erviti L et al (2013) Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson’s disease. Cell Death Dis 4(3):e545–e545

  59. Burgos K et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PloS One 9(5):e94839

  60. Doxakis E (2010) Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J Biol Chem 285(17):12726–12734

  61. Kabaria S et al (2015) Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett 589(3):319–325

  62. Ponomarev ED, Veremeyko T, Weiner HL (2013) MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 61(1):91–103

  63. Vizoso FJ et al (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kojima R et al (2018) Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun 9(1):1–10

    Article  CAS  Google Scholar 

  65. Cooper JM et al (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 29(12):1476–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shakespear N et al (2020) Astrocyte-derived exosomal microRNA miR-200a-3p prevents MPP+-induced apoptotic cell death through down-regulation of MKK4. Neurochem Res 45(5):1020–1033

    Article  CAS  PubMed  Google Scholar 

  67. McMillan KJ et al (2017) Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol Ther 25(10):2404–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baba Y et al (2005) Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord 11(8):493–498

    Article  PubMed  Google Scholar 

  69. Glennie S et al (2005) Mesenchymal stem cells induce division arrest anergy of activated T cells. Biol Blood Marrow Transplant 11(2):1

    Article  Google Scholar 

  70. Chen J et al (2019) Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma. Cell Death Dis 10(6):1–12

    Article  Google Scholar 

  71. Hoogduijn MJ, Lombardo E (2019) Mesenchymal stromal cells anno 2019: dawn of the therapeutic era? Concise review. Stem Cells Transl Med 8(11):1126–1134

    Article  PubMed  Google Scholar 

  72. Qiu X et al (2020) Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif 53(8):e12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Molchanova E et al (2011) The sensitivity of mesenchymal stromal cell subpopulations with different times of adhesion property manifestation and derived from hemopoietic organs to growth factors EGF, bFGF, and PDGF. Izv Akad Nauk Ser Biol 2:133–144

    Google Scholar 

  74. Cho D-I et al (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46(1):e70–e70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vasandan AB et al (2016) Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep 6(1):1–17

    Article  Google Scholar 

  76. Phinney DG, Pittenger MF (2017) MSC-derived exosomes for cell-free therapy stem cells. Stem Cells 35:851–858

  77. Marote A et al (2016) MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol 7(2016):231

    PubMed  PubMed Central  Google Scholar 

  78. Teixeira FG et al (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70(20):3871–3882

    Article  CAS  PubMed  Google Scholar 

  79. Salgado AJ et al (2015) Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci 9:249

    Article  PubMed  PubMed Central  Google Scholar 

  80. Takayama Y et al (2021) Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. J Control Release 329:1090–1101

    Article  CAS  PubMed  Google Scholar 

  81. Sordi V (2009) Mesenchymal stem cell homing capacity. Transplantation 87(9S):S42–S45

    Article  PubMed  Google Scholar 

  82. Meng Q-S et al (2020) Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J Stem Cells 12(9):966

    Article  PubMed  PubMed Central  Google Scholar 

  83. Joyce N et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946

    Article  PubMed  Google Scholar 

  84. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  85. Li M, Ikehara S (2013) Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int 2013:132642

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bian S et al (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med 92(4):387–397

    Article  CAS  PubMed  Google Scholar 

  87. Arslan F et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312

    Article  CAS  PubMed  Google Scholar 

  88. Zhang B et al (2014) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23(11):1233–1244

    Article  CAS  PubMed  Google Scholar 

  89. Tan CY et al (2014) Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 5(3):1–14

    Article  Google Scholar 

  90. Teixeira FG et al (2016) Modulation of the mesenchymal stem cell secretome using computer-controlled bioreactors: impact on neuronal cell proliferation, survival and differentiation. Sci Rep 6(1):1–14

    Article  Google Scholar 

  91. Assunção-Silva RC et al (2018) Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie 155:83–91

    Article  PubMed  Google Scholar 

  92. Pires AO et al (2016) Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem Cells Dev 25(14):1073–1083

    Article  CAS  PubMed  Google Scholar 

  93. Jarmalavičiūtė A et al (2015) Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxydopamine–induced apoptosis. Cytotherapy 17(7):932–939

    Article  PubMed  Google Scholar 

  94. Fan X-L et al (2020) Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 77(14):2771–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Harrell CR et al (2019) Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells 8(5):467

  96. Gong M et al (2017) Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8(28):45200

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sonntag K-C (2010) MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res 1338:48–57

  98. Ha D, Yang N, Nadithe V (2016) (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

  99. Alvarez-Erviti L et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotech 29(4):341–345

  100. Kim W et al (2014) miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling: miRNAs and IGF-1 signaling in Parkinson disease. Neurobiol Aging 35(7):1712

  101. Haney MJ et al (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30

  102. Lang FM et al (2018) Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro-Oncol 20(3):380–390

  103. Lee S-T et al (2017) Exosome-based delivery of miR-124 in a Huntington’s disease model. J Mov Dis 10(1):45

  104. Athauda D et al (2019) Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial. JAMA Neurol 76(4):420–429

  105. Mathieu M et al (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17

    Article  CAS  PubMed  Google Scholar 

  106. Witwer KW et al (2019) Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles. 8(1):1609206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Seyed Esmaeil Khoshnam for suggesting the subject of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, drafting the article or revising it critically for important intellectual content, and approval of the final version.

1. MA contributed to designing and preparing the manuscript.

2. MJ contributed to preparation of manuscript and editing it.

3. NY contributed to preparing figures and table and revising the manuscript.

Corresponding author

Correspondence to Maryam Sadat Jalali.

Ethics declarations

Ethics approval

This is a review article. There is no ethical approval applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrishamdar, M., Jalali, M.S. & Yazdanfar, N. The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell-derived exosomes against Parkinson’s disease. Neurol Sci 44, 2277–2289 (2023). https://doi.org/10.1007/s10072-023-06706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06706-y

Keywords

Navigation