Skip to main content

Advertisement

Log in

Applications and perspectives of polyphenol-loaded solid lipid nanoparticles and nanostructured lipid carriers for foods

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Imbalanced nutrition in modern society is one of the reasons for disorders, such as cancer, cardiovascular disease, and diabetes, which have attracted the interest in bioactives (particularly polyphenols) to assist in the balanced diet of modern people. Although stability can be maintained during preparation and storage, the ingested polyphenols undergo harsh gastrointestinal digestion processes, resulting in limited bioaccessibility and low gut-epithelial permeation and bioavailability. Several lipid-based formulations have been proposed to overcome these issues. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have also been highlighted as carrier systems for the oral delivery of lipophilic bioactives, including polyphenols. This paper summarizes the research on the ingredients, production methods, post-processing procedures, general characteristics, and advantages and disadvantages of SLNs and NLCs. Overall, this paper reviews the applications and perspectives of polyphenol-loaded SLNs and NLCs in foods, as well as their regulation, production, storage, and economic feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aditya NP, Ko S. Solid lipid nanoparticles (SLNs): delivery vehicles for food bioactives. RSC Advances. 5: 30902-30911 (2015)

    Article  CAS  Google Scholar 

  • Aditya NP, Shim M, Lee I, Lee YS, Im M, Ko S. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. Journal of Agricultural and Food Chemistry. 61: 1878-1883 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Singh SK. Preparation and characterization of solid lipid nanoparticles of furosemide using quality by design. Particulate Science and Technology. 36: 695-709 (2018)

    Article  CAS  Google Scholar 

  • Ali R, Staufenbiel S. Preparation and characterization of dexamethasone lipid nanoparticles by membrane emulsification technique, use of self-emulsifying lipids as a carrier and stabilizer. Pharmaceutical Development and Technology. 26: 262-268 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N. QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. International Journal of Pharmaceutics. 563: 110-121 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Arantes VT, Faraco AA, Ferreira FB, Oliveira CA, Martins-Santos E, Cassini-Vieira P, Barcelos LS, Ferreira LA, Goulart GA. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study. Colloids and Surfaces B: Biointerfaces. 188: 110749 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Ausborn M, Nuhn P, Schreier H. Stabilization of liposomes by freeze-thaw-and lyophilization techniques: problems and opportunities. European Journal of Pharmaceutics and Biopharmaceutics. 38: 133-139 (1992)

    CAS  Google Scholar 

  • Azizi M, Li Y, Kaul N, Abbaspourrad A. Study of the physicochemical properties of fish oil solid lipid nanoparticle in the presence of palmitic acid and quercetin. Journal of Agricultural and Food Chemistry. 67: 671-679 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Bagde A, Patel K, Kutlehria S, Chowdhury N, Singh M. Formulation of topical ibuprofen solid lipid nanoparticle (SLN) gel using hot melt extrusion technique (HME) and determining its anti-inflammatory strength. Drug Delivery and Translational Research. 9: 816-827 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Ban C. Control of colloidal stability and bioavailability of lipid nanoparticles for oral delivery of food bioactives. PhD thesis, Seoul National University, Seoul, Republic of Korea (2016)

  • Ban C, Jo M, Lim S, Choi YJ. Control of the gastrointestinal digestion of solid lipid nanoparticles using PEGylated emulsifiers. Food Chemistry. 239: 442-452 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Ban C, Jo M, Park YH, Kim JH, Han JY, Lee KW, Kweon DH, Choi YJ. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chemistry. 302: 125328 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Ban C, Lim S, Chang P, Choi YJ. Enhancing the stability of lipid nanoparticle systems by sonication during the cooling step and controlling the liquid oil content. Journal of Agricultural and Food Chemistry. 62: 11557-11567 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Ban C, Park SJ, Lim S, Choi SJ, Choi YJ. Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery. Journal of Agricultural and Food Chemistry. 63: 5266-5272 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Bargoni A, Cavalli R, Caputo O, Fundarò A, Gasco MR, Zara GP. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharmaceutical Research. 15: 745-750 (1998)

    Article  PubMed  Google Scholar 

  • Barras A, Mezzetti A, Richard A, Lazzaroni S, Roux S, Melnyk P, Betbeder D, Monfilliette-Dupont N. Formulation and characterization of polyphenol-loaded lipid nanocapsules. International Journal of Pharmaceutics. 379: 270-277 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Bazylińska U, Pucek A, Sowa M, Matczak-Jon E, Wilk KA. Engineering of phosphatidylcholine-based solid lipid nanocarriers for flavonoids delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 460: 483-493 (2014)

    Article  CAS  Google Scholar 

  • Bunjes H, Steiniger F, Richter W. Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir. 23: 4005-4011 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Carneiro G, Silva EL, Pacheco LA, de Souza-Fagundes EM, Corrêa NCR, de Goes AM, de Oliveira MC, Ferreira LAM. Formation of ion pairing as an alternative to improve encapsulation and anticancer activity of all-trans retinoic acid loaded in solid lipid nanoparticles. International Journal of Nanomedicine. 7: 6011 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. International Journal of Pharmaceutics. 148: 47-54 (1997)

    Article  CAS  Google Scholar 

  • Cercaci L, Rodriguez-Estrada MT, Lercker G, Decker EA. Phytosterol oxidation in oil-in-water emulsions and bulk oil. Food Chemistry. 102: 161-167 (2007)

    Article  CAS  Google Scholar 

  • Chirio D, Peira E, Dianzani C, Muntoni E, Gigliotti CL, Ferrara B, Sapino S, Chindamo G, Gallarate M. Development of solid lipid nanoparticles by cold dilution of microemulsions: curcumin loading, preliminary in vitro studies, and biodistribution. Nanomaterials. 9: 230 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Crowe LM, Crowe JH, Rudolph A, Womersley C, Appel L. Preservation of freeze-dried liposomes by trehalose. Archives of Biochemistry and Biophysics. 242: 240-247 (1985)

    Article  CAS  PubMed  Google Scholar 

  • da Silva Santos V, Ribeiro APB, Santana MHA. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Research International. 122: 610-626 (2019)

    Article  CAS  Google Scholar 

  • Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? European Journal of Pharmaceutical Sciences. 47: 139-151 (2012)

    Article  CAS  PubMed  Google Scholar 

  • dos Santos PP, Paese K, Guterres SS, Pohlmann AR, Costa TH, Jablonski A, Flôres SH, de Oliveira Rios A. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study. Journal of Nanoparticle Research. 17: 1-11 (2015)

    CAS  Google Scholar 

  • Fathi M, Varshosaz J, Mohebbi M, Shahidi F. Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: preparation, characterization, and modeling. Food and Bioprocess Technology. 6: 1464-1475 (2013)

    Article  CAS  Google Scholar 

  • Ferreira M, Chaves LL, Lima SAC, Reis S. Optimization of nanostructured lipid carriers loaded with methotrexate: a tool for inflammatory and cancer therapy. International Journal of Pharmaceutics. 492: 65-72 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Freitas C, Müller RH. Spray-drying of solid lipid nanoparticles (SLNTM). European Journal of Pharmaceutics and Biopharmaceutics. 46: 145-151 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Füredi P, Pápay ZE, Kovács K, Kiss BD, Ludányi K, Antal I, Klebovich I. Development and characterization of the voriconazole loaded lipid-based nanoparticles. Journal of Pharmaceutical and Biomedical Analysis. 132: 184-189 (2017)

    Article  PubMed  CAS  Google Scholar 

  • Gasco MR. Method for producing solid lipid microspheres having a narrow size distribution. U.S. Patent 5,250,236 (1993)

  • Gokce EH, Korkmaz E, Tuncay-Tanriverdi S, Dellera E, Sandri G, Bonferoni MC, Ozer O. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. International Journal of Nanomedicine. 7: 5109-5117 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  • González‐Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids and Surfaces B: Biointerfaces. 81: 412-421 (2010)

    Article  PubMed  CAS  Google Scholar 

  • Gordillo-Galeano A, Ponce A, Mora-Huertas CE. Surface structural characteristics of some colloidal lipid systems used in pharmaceutics. Journal of Drug Delivery Science and Technology. 62: 102345 (2021)

  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. International Journal of Pharmaceutics. 601: 120571 (2021)

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Wairkar S, Bhatt LK. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. Journal of Microencapsulation. 37: 557-565 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Gupta Y, Jain A, Jain SK. Transferrin‐conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. Journal of Pharmacy and Pharmacology. 59: 935-940 (2007)

    Article  CAS  PubMed  Google Scholar 

  • He J, Huang S, Sun X, Han L, Chang C, Zhang W, Zhong Q. Carvacrol loaded solid lipid nanoparticles of propylene glycol monopalmitate and glyceryl monostearate: preparation, characterization, and synergistic antimicrobial activity. Nanomaterials. 9: 1162 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Hecq J, Amighi K, Goole J. Development and evaluation of insulin-loaded cationic solid lipid nanoparticles for oral delivery. Journal of Drug Delivery Science and Technology. 36: 192-200 (2016)

    Article  CAS  Google Scholar 

  • Heiati H, Tawashi R, Phillips NC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. Journal of Microencapsulation. 15: 173-184 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Hejri A, Khosravi A, Gharanjig K, Hejazi M. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chemistry. 141: 117-123 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Heurtault B, Saulnier P, Pech B, Proust J, Benoit J. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharmaceutical Research. 19: 875-880 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Hibino M, Yamada Y, Fujishita N, Sato Y, Maeki M, Tokeshi M, Harashima H. The use of a microfluidic device to encapsulate a poorly water-soluble drug CoQ10 in lipid nanoparticles and an attempt to regulate intracellular trafficking to reach mitochondria. Journal of Pharmaceutical Sciences. 108: 2668-2676 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Houacine C, Adams D, Singh KK. Impact of liquid lipid on development and stability of trimyristin nanostructured lipid carriers for oral delivery of resveratrol. Journal of Molecular Liquids. 316: 113734 (2020)

    Article  CAS  Google Scholar 

  • Jannin V, Blas L, Chevrier S, Miolane C, Demarne F, Spitzer D. Evaluation of the digestibility of solid lipid nanoparticles of glyceryl dibehenate produced by two techniques: ultrasonication and spray-flash evaporation. European Journal of Pharmaceutical Sciences. 111: 91-95 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Jebors S, Leydier A, Wu Q, Bertino Ghera B, Malbouyre M, Coleman AW. Solid lipid nanoparticles (SLNs) derived from para-acyl-calix[9]-arene: preparation and stability. Journal of Microencapsulation. 27: 561-571 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Jenning V, Mäder K, Gohla SH. Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: a 1H-NMR study. International Journal of Pharmaceutics. 205: 15-21 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. International Journal of Pharmaceutics. 199: 167-177 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Jeong JH, Park TG, Kim SH. Self-assembled and nanostructured siRNA delivery systems. Pharmaceutical Research. 28: 2072-2085 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Kakadia PG, Conway BR. Solid lipid nanoparticles for targeted delivery of triclosan into skin for infection prevention. Journal of Microencapsulation. 35: 695-704 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Imam SS, Aqil M, Ahad A, Sultana Y, Ali A, Khan K. Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: brain pharmacokinetic and scintigraphic analyses. Molecular Pharmaceutics. 13: 3773-3782 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Shah FA, Rana I, Ansari MM, ud Din F, Rizvi SZH, Aman W, Lee GY, Lee ES, Kim JK. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. International Journal of Pharmaceutics. 577: 119033 (2020)

  • Khan S, Baboota S, Ali J, Narang RS, Narang JK. Chlorogenic acid stabilized nanostructured lipid carriers (NLC) of atorvastatin: formulation, design and in vivo evaluation. Drug Development and Industrial Pharmacy. 42: 209-220 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine-Nanotechnology Biology and Medicine. 6: 753-759 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Kim JT, Barua S, Kim H, Hong SC, Yoo SY, Jeon H, Cho Y, Gil S, Oh K, Lee J. Absorption study of genistein using solid lipid microparticles and nanoparticles: control of oral bioavailability by particle sizes. Biomolecules & Therapeutics. 25: 452 (2017)

    Article  CAS  Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine. 113: 71-88 (2002)

    Article  Google Scholar 

  • Lacatusu I, Mitrea E, Badea N, Stan R, Oprea O, Meghea A. Lipid nanoparticles based on omega-3 fatty acids as effective carriers for lutein delivery. Preparation and in vitro characterization studies. Journal of Functional Foods. 5: 1260-1269 (2013)

  • Laouini A, Koutroumanis KP, Charcosset C, Georgiadou S, Fessi H, Holdich RG, Vladisavljević GT. pH-Sensitive micelles for targeted drug delivery prepared using a novel membrane contactor method. ACS Applied Materials & Interfaces. 5: 8939-8947 (2013)

  • Lee SE, Lee JK, Jang WS, Kim TH, Tunsirikongkon A, Choi JS, Park JS. Enhancement of stability and controlled drug release of lipid nanoparticles by modified solvent-evaporation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 508: 294-300 (2016)

    Article  CAS  Google Scholar 

  • Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. Journal of Controlled Release. 133: 238-244 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zahi MR, Yuan Q, Tian F, Liang H. Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. European Journal of Lipid Science and Technology. 118: 592-602 (2016)

    Article  CAS  Google Scholar 

  • Lin YK, Al-Suwayeh SA, Leu YL, Shen FM, Fang JY. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata. Pharmaceutical Research. 30: 435-446 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Lippacher A, Müller RH, Mäder K. Investigation on the viscoelastic properties of lipid based colloidal drug carriers. International Journal of Pharmaceutics. 196: 227-230 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wu C. Optimization of nanostructured lipid carriers for lutein delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 353: 149-156 (2010)

    Article  CAS  Google Scholar 

  • Liu C, Wu C, Fang J. Characterization and formulation optimization of solid lipid nanoparticles in vitamin K1 delivery. Drug Development and Industrial Pharmacy. 36: 751-761 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Tang Y, Gao C, Li Y, Chen S, Xiong T, Li J, Du M, Gong Z, Chen H. Characterization and biodistribution in vivo of quercetin-loaded cationic nanostructured lipid carriers. Colloids and Surfaces B: Biointerfaces. 115: 125-131 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang L, Zhao Y, He M, Zhang X, Niu M, Feng N. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin. International Journal of Pharmaceutics. 476: 169-177 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Lucks JS, Müller RH, Konig B. Solid lipid nanoparticles (SLN)-an alternative parenteral drug carrier system. European Journal of Pharmaceutics and Biopharmaceutics. 38: 33S (1992)

    Google Scholar 

  • Lv F, Hasan M, Dang H, Hassan SG, Meng W, Deng Y, Dai R. Optimized luteolin loaded solid lipid nanoparticle under stress condition for enhanced bioavailability in rat plasma. Journal of Nanoscience and Nanotechnology. 16: 9443-9449 (2016)

    Article  CAS  Google Scholar 

  • Madureira AR, Campos DA, Oliveira A, Sarmento B, Pintado MM, Gomes AM. Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions. Colloids and Surfaces B: Biointerfaces. 139: 277-284 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 11: 397 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. American Journal of Clinincal Nutrition. 79: 727-747 (2004)

    Article  CAS  Google Scholar 

  • Manjappa AS, Chaudhari KR, Venkataraju MP, Dantuluri P, Nanda B, Sidda C, Sawant KK, Murthy RSR. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. Journal of Controlled Release. 150: 2-22 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Acevedo L, de la Luz Zambrano-Zaragoza M, Vidal-Romero G, Mendoza-Elvira S, Quintanar-Guerrero D. Evaluation of the lubricating effect of magnesium stearate and glyceryl behenate solid lipid nanoparticles in a direct compression process. International Journal of Pharmaceutics. 545: 170-175 (2018)

    Article  PubMed  CAS  Google Scholar 

  • Maurya VK, Aggarwal M. A phase inversion based nanoemulsion fabrication process to encapsulate vitamin D3 for food applications. The Journal of Steroid Biochemistry and Molecular Biology. 190: 88-98 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Advanced Drug Delivery Reviews. 47: 165-196 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Mehrad B, Ravanfar R, Licker J, Regenstein JM, Abbaspourrad A. Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Research International. 105: 962-969 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Mobley WC, Schreier H. Phase transition temperature reduction and glass formation in dehydroprotected lyophilized liposomes. Journal of Controlled Release. 31: 73-87 (1994)

    Article  CAS  Google Scholar 

  • Molska A, Nyman AKG, Sofias AM, Kristiansen KA, Hak S, Widerøe M. In vitro and in vivo evaluation of organic solvent-free injectable melatonin nanoformulations. European Journal of Pharmaceutics and Biopharmaceutics. 152: 248-256 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Maassen S, Schwarz C. Solid lipid nanoparticles (SLN) as potential carrier for human use: interaction with human granulocytes. Journal of Controlled Release. 47: 261-269 (1997)

    Article  Google Scholar 

  • Müller RH, Maassen S, Weyhers H, Specht F, Lucks JS. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. International Journal of Pharmaceutics. 138: 85-94 (1996a)

    Article  Google Scholar 

  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery — a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics. 50: 161-177 (2000)

    Article  PubMed  Google Scholar 

  • Müller RH, Mehnert W, Lucks JS, Schwarz C, zur Mühlen A, Weyhers H, Freitas C, Rühl D. Solid lipid nanoparticles (SLN)-an alternative colloidal carrier system for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 41: 62-69 (1995)

  • Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Advanced Drug Delivery Reviews. 59: 522-530 (2007)

    Article  PubMed  CAS  Google Scholar 

  • Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. International Journal of Pharmaceutics. 242: 121-128 (2002a)

    Article  PubMed  Google Scholar 

  • Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews. 54: S131-S155 (2002b)

    Article  PubMed  Google Scholar 

  • Müller RH, Rühl D, Runge SA. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. International Journal of Pharmaceutics. 144: 115-121 (1996b)

    Article  Google Scholar 

  • Muchow M, Maincent P, Müller RH. Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Development and Industrial Pharmacy. 34: 1394-1405 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. Journal of Drug Delivery Science and Technology. 55: 101458 (2020)

  • Nayak K, Katiyar SS, Kushwah V, Jain S. Coenzyme Q10 and retinaldehyde co-loaded nanostructured lipid carriers for efficacy evaluation in wrinkles. Journal of Drug Targeting. 26: 333-344 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Neves AR, Lúcio M, Martins S, Lima JL, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. International Journal of Nanomedicine. 8: 177-187 (2013)

    PubMed  PubMed Central  CAS  Google Scholar 

  • Öztürk AA, Aygül A, Şenel B. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): formulation, characterization, antibacterial activity and cytotoxicity. Journal of Drug Delivery Science and Technology. 54: 101240 (2019)

  • Ozturk B, Argin S, Ozilgen M, McClements DJ. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: whey protein isolate and gum arabic. Food Chemistry. 188: 256-263 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Pardeike J, Weber S, Haber T, Wagner J, Zarfl HP, Plank H, Zimmer A. Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. International Journal of Pharmaceutics. 419: 329-338 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Ban SJ, Ahmed T, Choi HS, Yoon HE, Yoon JH, Choi HK. Development of DH-I-180-3 loaded lipid nanoparticle for photodynamic therapy. International Journal of Pharmaceutics. 491: 393-401 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Piao H, Ouyang M, Xia D, Quan P, Xiao W, Song Y, Cui F. In vitroin vivo study of CoQ10-loaded lipid nanoparticles in comparison with nanocrystals. International Journal of Pharmaceutics. 419: 255-259 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Pikal MJ, Shah S, Roy ML, Putman R. The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure. International Journal of Pharmaceutics. 60: 203-207 (1990)

    Article  CAS  Google Scholar 

  • Pimentel-Moral S, Teixeira M, Fernandes A, Arráez-Román D, Martínez-Férez A, Segura-Carretero A, Souto E. Lipid nanocarriers for the loading of polyphenols–a comprehensive review. Advances in Colloid and Interface Science. 260: 85-94 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Plaza-Oliver M, Santander-Ortega M, Castro-Vázquez L, Rodríguez-Robledo V, González-Fuentes J, Marcos P, Lozano M, Arroyo-Jiménez M. The role of the intestinal-protein corona on the mucodiffusion behaviour of new nanoemulsions stabilised by ascorbyl derivatives. Colloids and Surfaces B: Biointerfaces. 186: 110740 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Priano L, Esposti D, Esposti R, Castagna G, De Medici C, Fraschini F, Gasco MR, Mauro A. Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. Journal of Nanoscience and Nanotechnology. 7: 3596-3601 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharmaceutical Research. 32: 389-402 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Rathod M, Suthar D, Patel H, Shelat P, Parejiya P. Microemulsion based nasal spray: a systemic approach for non-CNS drug, its optimization, characterization and statistical modelling using QbD principles. Journal of Drug Delivery Science and Technology. 49: 286-300 (2019)

    Article  CAS  Google Scholar 

  • Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HM. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. European Journal of Medicinal Chemistry. 157: 705-715 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti F, Marraccini C, D’Arca D, Pelà M, Pinetti D, Maretti E, Hanuskova M, Iannuccelli V, Costi MP, Leo E. Enhanced anti-hyperproliferative activity of human thymidylate synthase inhibitor peptide by solid lipid nanoparticle delivery. Colloids and Surfaces B: Biointerfaces. 136: 346-354 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Saini S, Sharma T, Jain A, Kaur H, Katare O, Singh B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: a preclinical evidence. Colloids and Surfaces B: Biointerfaces. 205: 111838 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Salminen H, Helgason T, Kristinsson B, Kristbergsson K, Weiss J. Tuning of shell thickness of solid lipid particles impacts the chemical stability of encapsulated ω-3 fish oil. Journal of Colloid and Interface Science. 490: 207-216 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Samkange T, D'Souza S, Obikeze K, Dube A. Influence of PEGylation on PLGA nanoparticle properties, hydrophobic drug release and interactions with human serum albumin. Journal of Pharmacy and Pharmacology. 71: 1497-1507 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Sandhu SK, Kumar S, Raut J, Singh M, Kaur S, Sharma G, Roldan TL, Trehan S, Holloway J, Wahler G. Systematic development and characterization of novel, high drug-loaded, photostable, curcumin solid lipid nanoparticle hydrogel for wound healing. Antioxidants. 10: 725 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schjoerring-Thyssen J, Olsen K, Koehler K, Jouenne E, Rousseau Dr, Andersen ML. Morphology and structure of solid lipid nanoparticles loaded with high concentrations of β-carotene. Journal of Agricultural and Food Chemistry. 67: 12273-12282 (2019)

  • Schröder A, Sprakel J, Schroën K, Berton‐Carabin CC. Chemical stability of α‐tocopherol in colloidal lipid particles with various morphologies. European Journal of Lipid Science and Technology. 122: 2000012 (2020)

  • Schubert MA, Müller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles — evaluation of the method and process parameters. European Journal of Pharmaceutics and Biopharmaceutics. 55: 125-131 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Schwarz C, Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). International Journal of Pharmaceutics. 157: 171-179 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Schwarz C, Mehnert W, Lucks JS, Müller RH. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. Journal of Controlled Release. 30: 83-96 (1994)

  • Schwarz JC, Baisaeng N, Hoppel M, Löw M, Keck CM, Valenta C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. International Journal of Pharmaceutics. 447: 213-217 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Sebaaly C, Greige-Gerges H, Agusti G, Fessi H, Charcosset C. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant. Journal of Liposome Research. 26: 126-138 (2016)

    CAS  PubMed  Google Scholar 

  • Seok SH, Lee SA, Park ES. Formulation of a microemulsion-based hydrogel containing celecoxib. Journal of Drug Delivery Science and Technology. 43: 409-414 (2018)

    Article  CAS  Google Scholar 

  • Shah RM, Eldridge DS, Palombo EA, Harding IH. Microwave-assisted microemulsion technique for production of miconazole nitrate-and econazole nitrate-loaded solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 117: 141-150 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Shahgaldian P, Da Silva E, Coleman AW, Rather B, Zaworotko MJ. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): a detailed study of preparation and stability parameters. International Journal of Pharmaceutics. 253: 23-38 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Burn P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nature Reviews Drug Discovery. 3: 695-710 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Shirodkar RK, Kumar L, Mutalik S, Lewis S. Solid lipid nanoparticles and nanostructured lipid carriers: emerging lipid based drug delivery systems. Pharmaceutical Chemistry Journal. 53: 440-453 (2019)

    Article  CAS  Google Scholar 

  • Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-based controlled drug delivery for cancer treatment: a review. Molecular Pharmaceutics. 17: 373-391 (2019)

    Google Scholar 

  • Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innovative Food Science & Emerging Technologies. 26: 366-374 (2014)

    Article  CAS  Google Scholar 

  • Tan SW, Billa N, Roberts CR, Burley JC. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 372: 73-79 (2010)

    Article  CAS  Google Scholar 

  • Taylor P. Ostwald ripening in emulsions. Advances in Colloid and Interface Science. 75: 107-163 (1998)

    Article  CAS  Google Scholar 

  • Teeranachaideekul V, Müller RH, Junyaprasert VB. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability. International Journal of Pharmaceutics. 340: 198-206 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Trombino S, Cassano R, Muzzalupo R, Pingitore A, Cione E, Picci N. Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of β-carotene and α-tocopherol. Colloids and Surfaces B: Biointerfaces. 72: 181-187 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Tsai M, Wu P, Huang Y, Chang J, Lin C, Tsai Y, Fang J. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. International Journal of Pharmaceutics. 423: 461-470 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Tukulula M, Hayeshi R, Fonteh P, Meyer D, Ndamase A, Madziva MT, Khumalo V, Lubuschagne P, Naicker B, Swai H. Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharmaceutical Research. 32: 2713-2726 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine. 2: 289 (2007)

    PubMed  PubMed Central  Google Scholar 

  • Vemuri S, Yu C, Degroot JS, Wangsatornthnakun V, Venkataram S. Effect of sugars on freeze-thaw and lyophilization of liposomes. Drug Development and Industrial Pharmacy. 17: 327-348 (1991)

    Article  CAS  Google Scholar 

  • Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. Journal of Controlled Release. 95: 627-638 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. Journal of Controlled Release. 48: 223-236 (1997)

    Article  CAS  Google Scholar 

  • Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews. 56: 1257-1272 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Xiang Q, Wang M, Chen F, Gong T, Jian Y, Zhang Z, Huang Y. Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Archives of Pharmacal Research. 30: 519-525 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Harte F. Casein maps: effect of ethanol, pH, temperature, and CaCl2 on the particle size of reconstituted casein micelles. Journal of Dairy Science. 96: 799-805 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Williams GR, Yang J, Wang X, Yang J, Li X. Solid lipid nanoparticles self-assembled from electrosprayed polymer-based microparticles. Journal of Materials Chemistry. 21: 15957-15961 (2011)

    Article  CAS  Google Scholar 

  • Yuan H, Wang L, Du Y, You J, Hu F, Zeng S. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids and Surfaces B: Biointerfaces. 60: 174-179 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Li Q, Xu H, Su T, Wang Y-e, Huang W, Ma Y, Guan S. An aseptic one-shot bottom-up method to produce progesterone nanocrystals: controlled size and improved bioavailability. Molecular Pharmaceutics. 16: 5076-5084 (2019)

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Hayes DG, Chen G, Zhong Q. Transparent dispersions of milk-fat-based nanostructured lipid carriers for delivery of β-carotene. Journal of Agricultural and Food Chemistry. 61: 9435-9443 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li X, Ye T, Chen F, Sun X, Kong J, Yang X, Pan W, Li S. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. International Journal of Pharmaceutics. 454: 354-366 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang Y, Gao F, Bu H, Gu W, Li Y. Daidzein–phospholipid complex loaded lipid nanocarriers improved oral absorption: in vitro characteristics and in vivo behavior in rats. Nanoscale. 3: 1780-1787 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang Y, Gao F, Gao Z, Bu H, Gu W, Li Y. A self-assembled nanodelivery system enhances the oral bioavailability of daidzein: in vitro characteristics and in vivo performance. Nanomedicine. 6: 1365-1379 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann E, Müller RH, Mäder K. Influence of different parameters on reconstitution of lyophilized SLN. International Journal of Pharmaceutics. 196: 211-213 (2000)

    Article  CAS  PubMed  Google Scholar 

  • zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. European Journal of Pharmaceutics and Biopharmaceutics. 45: 149-155 (1998)

Download references

Acknowledgements

This study was supported by the 2021 Research Fund of the University of Seoul.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Choongjin Ban, Seokwon Lim or Young Jin Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Ban, C., Kim, SO. et al. Applications and perspectives of polyphenol-loaded solid lipid nanoparticles and nanostructured lipid carriers for foods. Food Sci Biotechnol 31, 1009–1026 (2022). https://doi.org/10.1007/s10068-022-01093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01093-0

Keywords

Navigation