Skip to main content
Log in

Comprehensive review on potential applications of microfluidization in food processing

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Microfluidizer is one of the emerging processing technologies which has brought tremendous and desirable changes in food matrix. By generating high cavitation, shear, velocity impact and turbulent forces, microfluidizer brought structural modifications in food which led to significant improvements in physicochemical, functional, nutritional, rheological and sensory properties of food products without affecting their natural flavour. Reduction in particle size and thereby increase in surface area has brought these unique modifications. Microfluidization also improved bioavailability and bioaccessibility of bioactives by making them more exposed. Applications of microfluidizer includes stable emulsion/suspension formation, encapsulation, and nanoparticle production. It has also shown its preservation potential by inactivating enzymes and microbes thus improving food stability. The present review comprehensively discusses the working principle and effect of microfluidizer on dairy products, fruit juices, cereals, starches, egg yolk, emulsions, suspensions, and other novel products formulations. Microfluidization has opened a new channel for developing novel food ingredients non-thermally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HPH:

High pressure homogenizer

MF:

Microfluidization

WHC:

Water holding capacity

OHC:

Oil holding capacity

CEC:

Cation exchange capacity

WPC:

Whey protein concentrate

WPI:

Whey protein isolates

IDF:

Insoluble dietary fibre

PPO:

Polyphenol oxidase

References

  • Abliz, A., Liu, J., Mao, L., Yuan, F., & Gao, Y. Effect of dynamic high pressure microfluidization treatment on physical stability, microstructure and carotenoids release of sea buckthorn juice. LWT - Food Science and Technology. 135, 110277 (2021)

  • Augustin, M. A., Sanguansri, P., & Htoon, A. Functional performance of a resistant starch ingredient modified using a microfluidizer. Innovative Food Science and Emerging Technologies. 9: 224-231 (2008)

    Article  CAS  Google Scholar 

  • Bucci, A. J., Hekken, D. L. Van, Tunick, M. H., Renye, J. A., & Tomasula, P. M. The effects of microfluidization on the physical, microbial, chemical, and coagulation properties of milk. Journal of Dairy Science. 101: 6990-7001 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Cano-Sarmiento, C., Monroy-Villagrana, A., Alamilla-Beltrán, L., Hernández-Sánchez, H., Cornejo-Mazón, M., Téllez-Medina, D. I., Jiménez-Martínez, C., & Gutiérrez-López, G. F. Micromorphometric characteristics of α-Tocopherol emulsions obtained by microfluidization. Revista Mexicana de Ingeniería Química. 13(1): 201-212 (2014)

    CAS  Google Scholar 

  • Cavender, G. A., & Kerr, W. L. Microfluidization of full-fat ice cream mixes: Effects of gum stabilizer choice on physical and sensory changes. Journal of Food Process Engineering. (2013)

  • Cavender, G. A., & Kerr, W. L. Microfluidization of full-fat ice cream mixes: Effects on rheology and microstructure. Journal of Food Process Engineering. 43(2) (2020)

  • Chavan, R., Kumar, A., Mishra, V., & Nema, P. K. Effect of microfluidization on mango flavoured yoghurt: rheological properties and pH parameter. International Journal of Food and Nutritional Sciences. 3(4): 84-90 (2014)

    Google Scholar 

  • Chavan, R. S., Sehrawat R., Mishra, V., & Bhatt, S. Milk Processing, In Encyclopedia of Food Safety and Health (pp. 729-735) Oxford: Academic Press (2016)

  • Chavan, R. S., Kumar, A., Sehrawat R., & Nalawade, T. Dairy Engineering: Milk Processing and Milk Products. In Meghwal, M., Goyal, M. R., Chavan, R. S. (Eds.), Dairy Engineering Advanced Technologies and Their Applications (pp. 81-102). Apple Academic Press (2017)

  • Chen, J., Gao, D., Yang, L., & Gao, Y. Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International. 54: 1821-1827 (2013)

    Article  CAS  Google Scholar 

  • Chen, B., Guo, Z., Miao, S., Zeng, S., Jia, X., Zhang, Y., & Zheng, B. Preparation and characterization of lotus seed starch-fatty acid complexes. Journal of Food Engineering. (2018)

  • Chen, L., Dai, Y., Hou, H., Wang, W., Ding, X., Zhang, H., Li, X., & Dong, H. Effect of high pressure microfluidization on the morphology, structure and rheology of sweet potato starch. Food Hydrocolloids. 115(61): 106606 (2021)

  • Ciron, C. I.E., Gee, V. L., Kelly, A. L., & Auty, M. A. E. Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal. 20: 314-320 (2010)

    Article  Google Scholar 

  • Ciron, C. I. E, Gee, V. L., Kelly, A. L., & Auty, M. A. E. Effect of microfluidization of heat-treated milk on rheology and sensory properties of reduced fat yoghurt. Food Hydrocolloids. 25: 1470-1476 (2011)

    Article  CAS  Google Scholar 

  • Ciron, C. I. E., Gee, V. L., Kelly, A. L., & Auty, M. A. E. Modifying the microstructure of low-fat yoghurt by microfluidization of milk at different pressures to enhance rheological and sensory properties. Food Chemistry. 130: 510-519 (2012)

    Article  CAS  Google Scholar 

  • Codin, G. G., Franciuc, S. G., & Mironeasa, S. Rheological characteristics and microstructure of milk yogurt as influenced by Quinoa flour addition. Journal of Food Quality. 39: 559-566 (2016)

    Article  Google Scholar 

  • Cook, E. J. & Lagace, A. P. (1985). Apparatus for forming emulsions. United States Patent 4533254.

  • Cooke, P. H., Tunick, M. H., Malin, E. L., Smith, P. W., & Van Hekken, D. L. Effect of high pressure microfluidization on microstructure of mozzarella cheese. LWT - Food Science and Technology. 33(8): 538-544 (2000)

    Article  Google Scholar 

  • De Lorenzi, L., Pricl, S., & Torriano, G. Rheological behaviour of low-fat and full-fat stirred yoghurt. International Dairy Journal. 5: 661-671 (1995)

    Article  Google Scholar 

  • Demirkesen, I., Vilgis, T. A., & Mert, B. Effect of microfluidization on the microstructure and physical properties of a novel yoghurt formulation. Journal of Food Engineering. (2018)

  • Dhiman, A., & Prabhakar, P. K. Micronization in food processing: A comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials. Journal of Food Engineering. 292: 110248 (2021)

  • Farhang, B., Kakuda, Y., & Corredig, M. Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Science and Technology. (2012)

  • Feijoo, S. C., Hayes, W. W., Watson, C. E., & Martin, J. H. Effects of Microfluidizer® technology on Bacillus licheniformis spores in ice cream mix. Journal of Dairy Science. 80: 2184-2187 (1997)

    Article  CAS  PubMed  Google Scholar 

  • García-Márquez, E., Higuera-Ciapara, I., & Espinosa-Andrews, H. Design of fish oil-in-water nanoemulsion by microfluidization. Innovative Food Science and Emerging Technologies. (2016)

  • Ge, Z., Zhang, Y., Jin, X., Wang, W., Wang, X., Liu, M., Zhang, L., & Zong, W. Effects of dynamic high-pressure microfluidization on the physicochemical, structural and functional characteristics of Eucommia ulmoides Oliv. seed meal proteins. Lwt, 138: 110766 (2021)

  • Ghaderi, M., Mousavi, M., Yousefi, H., & Labbafi, M. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers. 104: 59-65 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Ghanghas, N., Prabhakar, P. K., Sharma, S., & Mukilan, M. T. Microfluidization of fenugreek (Trigonella foenum graecum) seed protein concentrate: Effects on functional, rheological, thermal and microstructural properties. LWT-Food Science and Technology. 149: 111830 (2021)

  • Gong, K., Chen, L., Xia, H., Dai, H., Li, X., Sun, L., Kong, W., & Liu, K. Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization. International Journal of Biological Macromolecules. 130: 915-921 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Gong, K., Deng, L., Shi, A., Liu, H., Liu, L., Hu, H., Adhikari, B., & Wang, Q. High-pressure microfluidization pretreatment disaggregate peanut protein isolates to prepare antihypertensive peptide fractions. International Journal of Food Science and Technology. 1-10 (2017)

  • Guo, X., Chen, M., Li, Y., Dai, T., Shuai, X., Chen, J., & Liu, C. Modification of food macromolecules using dynamic high pressure microfluidization: A review. Trends in Food Science and Technology. 100: 223-234 (2020)

    Article  CAS  Google Scholar 

  • Hardham, J. F., Imison, B. W., & French, H. M. Effect of homogenisation and microfluidization on the extent of fat separation during storage of UHT milk. Australian Journal of Dairy Technology. 55(1): 16-22 (2000)

    CAS  Google Scholar 

  • He, F., Wang, T., Zhu, S., & Chen, G. Modeling the effects of microfluidization conditions on properties of corn bran. Journal of Cereal Science. (2016)

  • He, X., Chen, J., He, X., Feng, Z., Li, C., Liu, W., Dai, T., & Liu, C. Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein. Innovative Food Science and Emerging Technologies. 67: 102582 (2021)

  • Van Hekken, Diane L., Tunick, M. H., Malin, E. L., & Holsinger, V. H. Rheology and melt characterization of low-fat and full fat Mozzarella cheese made from microfluidized milk. LWT - Food Science and Technology. 40: 89-98 (2007)

  • Hendrickx, M., Ludikhuyze, L., Broeck, I. ,Van Den, & Weemaes, C. Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology. 9: 197-203 (1998)

    Article  CAS  Google Scholar 

  • Henriksson, M., Berglund, L. A., Isaksson, P., Lindstro, T., & Nishino, T. Cellulose Nanopaper Structures of High Toughness. Biomacromolecules. 9: 1579-1585 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Homayouni, A., Amini, M., Sohrabi, M., Varshosaz, J., & Nokhodchi, A. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization. International Journal of Pharmaceutics. (2019)

  • Horn, A. F., Nielsen, N. S., Jensen, L. S., Horsewell, A., & Jacobsen, C. The choice of homogenisation equipment affects lipid oxidation in emulsions. Food Chemistry. 134: 803-810 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Hu, C., Xiong, Z., Xiong, H., Chen, L., & Zhang, Z. Effects of dynamic high-pressure microfluidization treatment on the functional and structural properties of potato protein isolate and its complex with chitosan. Food Research International. 140: 109868 (2021)

  • Hu, X., Amakye, W. K., He, P., Wang, M., & Ren, J. Effects of microfluidization and transglutaminase cross-linking on the conformations and functional properties of arachin and conarachin in peanut. LWT-Food Science and Technology. 146(381): 111438 (2021)

  • Iordache, M., & Jelen, P. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innovative Food Science and Emerging Technologies. 4: 367-376. (2003)

    Article  CAS  Google Scholar 

  • Jafari, S. M., He, Y., & Bhandari, B. Nano-emulsion production by sonication and microfluidization—A comparison. International Journal of Food Properties. 9(3): 475-485 (2006)

    Article  CAS  Google Scholar 

  • Jafari, S. M., He, Y., & Bhandari, B. Optimization of nano-emulsions production by microfluidization. European Food Research and Technology. 225: 773-741 (2007a)

    Article  Google Scholar 

  • Jafari, S. M., He, Y., & Bhandari, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering. 82(4): 478-488 (2007b)

    Article  Google Scholar 

  • Jo, Y. J., & Kwon, Y. J. Characterization of β-carotene nanoemulsions prepared by microfluidization technique. In Food Science and Biotechnology (Vol. 23, Issue 1, pp. 107-113) (2014)

  • Kadian, D., Kumar, A., Badgujar, P. C., & Sehrawat, R. Effect of homogenization and microfluidization on physicochemical and rheological properties of mayonnaise. Journal of Food Process Engineering. 44(4): 1-10 (2021)

    Article  Google Scholar 

  • Karadeniz, M., Sahin, S., & Sumnu, G. Enhancement of storage stability of wheat germ oil by encapsulation. Industrial Crops & Products. 114: 14-18 (2018)

    Article  CAS  Google Scholar 

  • Kohli, G., Jain, G., Bisht, A., Upadhyay, A., Kumar, A., & Dabir, S. Effect of non-thermal hurdles in shelf life enhancement of sugarcane juice. LWT - Food Science and Technology. 112, 108233 (2019)

  • Koley, T. K., Nishad, J., Kaur, C., Su, Y., Sethi, S., Saha, S., Sen, S., & Bhatt, B. P. Effect of high-pressure microfluidization on nutritional quality of carrot (Daucus carota L.) juice. Journal of Food Science and Technology. 57(6): 2159-2168 (2020)

  • Koo, C. K. W., Chung, C., Ogren, T., Mutilangi, W., & McClements, D. J. Extending protein functionality: Microfluidization of heat denatured whey protein fibrils. Journal of Food Engineering. (2018)

  • Koxholt, M. M. R., Eisenmann, B., & Hinrichs, J. Effect of the fat globule sizes on the meltdown of ice cream. Journal of Dairy Science. 84: 31-37 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Badgujar, P. C., Mishra, V., Sehrawat, R., Babar, O. A., & Upadhyay, A. Effect of microfluidization on cholesterol , thermal properties and in vitro and in vivo protein digestibility of milk. LWT - Food Science and Technology. 116: 108523 (2019)

  • Lemay, A., Paquin, P., & Lacroix, C. Influence of microfluidization of milk on cheddar cheese composition, color, texture, and yield. Journal of Dairy Science. 77: 2870-2879 (1994)

    Article  Google Scholar 

  • Leyva-Daniel, D. E., Alamilla-Beltran, L., Villalobos-Castillejos, F., Monroy-Villagrana, A., Jimenez-Guzman, J., & Welti-Chanes, J. Microfluidization as a honey processing proposal to improve its functional quality. Journal of Food Engineering. 274: 109831 (2020)

  • Li, L. W., Chen, X. Y., Liu, L. C., Yang, Y., Wu, Y. J., Chen, G., Zhang, Z. F., & Luo, P. Oil-in-water camellia seeds oil nanoemulsions via high pressure microfluidization: Formation and evaluation. LWT-Food Science and Technology. 140: 110815 (2021)

  • Liu, W., Liu, J., Liu, C., Zhong, Y., Liu, W., & Wan, J. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment. Innovative Food Science and Emerging Technologies. 10: 142-147 (2009a)

    Article  CAS  Google Scholar 

  • Liu, W., Liu, J., Xie, M., Liu, C., Liu, W., & Wan, J. Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from chinese pear (Pyrus pyrifolia Nakai). Journal of Agricultural and Food Chemistry. 57: 5376-5380 (2009b)

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Wang, R., Li, J., Zhang, L., Zhang, J., Zong, W., & Mo, W. Dynamic high pressure microfluidization (DHPM): Physicochemical properties, nutritional constituents and microorganisms of yam juice. Czech Journal of Food Sciences. 39(3): 217-225 (2021)

    Article  CAS  Google Scholar 

  • Liu, C. mei, Liang, R. hong, Dai, T. tao, Ye, J. ping, Zeng, Z. cong, Luo, S. jing, & Chen, J. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch. Food Hydrocolloids. 57: 55-61 (2016)

  • Llinares, R., Santos, J., Trujillo-Cayado, L. A., Ramírez, P., & Muñoz, J. Enhancing rosemary oil-in-water microfluidized nanoemulsion properties through formulation optimization by response surface methodology. LWT - Food Science and Technology. 97: 370-375 (2018)

    Article  CAS  Google Scholar 

  • Lucey, J. A., Johnson, M. E., & Horne, D. S. Invited Review: Perspectives on the basis of the rheology and texture properties of cheese. Journal of Dairy Science. 86: 2725-2743 (2003)

    Article  CAS  PubMed  Google Scholar 

  • McClements, D. J. Emulsion formation. In D. J. McClements (Ed.), Food Emulsions Principles, Practices, and Techniques (pp. 245-284). CRC Press Taylor & Francis Group (2016)

  • Mccrae, C. H. Homogenization of milk emulsions:use of microfluidizer. International Journal of Dairy Technology. 47: 28-31 (1994)

    Article  Google Scholar 

  • Mert, B. Using high pressure microfluidization to improve physical properties and lycopene content of ketchup type products. Journal of Food Engineering. 109: 579-587 (2012)

    Article  CAS  Google Scholar 

  • Mert, B., Tekin, A., & Demirkesen, I. Production of microfluidized wheat bran fibers and evaluation as an ingredient in reduced flour bakery product. Food Bioprocess Technology. (2014)

  • Mert, I. D. The applications of microfluidization in cereals and cereal-based products: An overview. Critical Reviews in Food Science and Nutrition. 1-18 (2019)

  • Microfluidics. Microfluidizer processor user guide. 1-11. (2008) In: http://movileanulabsyr.edu/MicrofluidizerProcessorUserGuide.pdf. Accesed on: 07/07/21.

  • Moll, P., Salminen, H., Schmitt, C., & Weiss, J. Impact of microfluidization on colloidal properties of insoluble pea protein fractions. European Food Research and Technology. 247(3): 545-554 (2021)

    Article  CAS  Google Scholar 

  • Monroy-Rodríguez, I., Gutiérrez-López, G. F., Hernández-Sánchez, H., López-Hernández, R. E., Cornejo-Mazón, M., Dorántes-Álvarez, L., & Alamilla-Beltrán, L. Surface roughness and textural image analysis, particle size and stability of microparticles obtained by microfluidization of soy protein isolate aggregates suspensions. Revista Mexicana de Ingeniería Química. 20(2): 787-805 (2021)

    Article  Google Scholar 

  • Morales-Medina, R., Dong, D., Schalow, S., & Drusch, S. Impact of microfluidization on the microstructure and functional properties of pea hull fibre. Food Hydrocolloids. 103, 105660 (2020)

  • Oliete, B., Potin, F., Cases, E., & Saurel, R. Microfluidization as homogenization technique in pea globulin-based emulsions. Food and Bioprocess Technology. (2019)

  • Olson, D. W., White, C. H., & Watson, C. E. Properties of frozen dairy desserts processed by microfluidization of their mixes. Journal of Dairy Science, 86: 1157-1162 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Olson, D. W., White, C. H., & Richter, R. L. Effect of pressure and fat content on particle sizes in microfluidized milk. Journal of Dairy Science. 87(10): 3217-3223 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Ozturk, O. K., & Turasan, H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends in Food Science & Technology. (2021a)

  • Ozturk, O. K., & Turasan, H. Latest developments in the applications of microfluidization to modify the structure of macromolecules leading to improved physicochemical and functional properties. Critical Reviews in Food Science and Nutrition. 0(0): 1-23 (2021b)

  • Ozturk, O. K., & Mert, B. The effects of microfluidization on rheological and textural properties of gluten-free corn breads. Food Research International. 105: 782-792 (2018a)

    Article  CAS  PubMed  Google Scholar 

  • Ozturk, O. K., & Mert, B. The use of microfluidization for the production of xanthan and citrus fiber-based gluten-free corn breads. LWT - Food Science and Technology. 96: 34-41 (2018b)

    Article  CAS  Google Scholar 

  • Ozturk, O. K., & Mert, B. Characterization and evaluation of emulsifying properties of high pressure microfluidized and pH shifted corn gluten meal. Innovative Food Science and Emerging Technologies. 52: 179-188 (2019)

    Article  CAS  Google Scholar 

  • Paquin, P. Technological properties of high pressure homogenizers: The effect of fat globules, milk proteins, and polysaccharides. International Dairy Journal. 9: 329-335 (1999)

    Article  CAS  Google Scholar 

  • Paquin, P., & Giasson, J. La microfluidization comme procédé d’homogénéisation d’une boisson à base de matière grasse laitière. Le Lait. 69(6): 491-498 (1989)

    Article  Google Scholar 

  • Paquin, P., Lebeuf, Y., Richard, J. P., & Kalab, M. Microparticulation of milk proteins by high pressure homogenization to produce a fat substitute. International Dairy Federation. 389-396 (1993)

  • Pinnamaneni, S., Das, N. G., & Das, S. K. Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization. Pharmazie. 58(8): 554-558 (2003)

    CAS  PubMed  Google Scholar 

  • Pouliot, Y., Britten, M., & Latreille, B. Effect of high-pressure homogenization on a sterilized infant formula: Microstructure and age gelation. Food Structure. 9: 1-8 (1990)

    Google Scholar 

  • Robin, O., Blanchot, V., Vuillemard, J. C., & Paquin, P. Microfluidization of dairy model emulsions. I. Preparation of emulsions and influence of processing and formulation on the size distribution of milk fat globules. Le Lait. 72: 511-531 (1992)

  • Santos, J., Calero, N., Trujillo-Cayado, L. A., Martín-Piñero, M. J., & Muñoz, J. Processing and formulation optimization of mandarin essential oil-loaded emulsions developed by microfluidization. Materials. 13(16) (2020)

  • Suhag, R., Dhiman, A., Thakur, D., Kumar, A., & Upadhyay, A. Physico-chemical and functional properties of microfluidized egg yolk. Journal of Food Engineering, 294: 110416 (2021)

  • Sun, C., Yang, J., Liu, F., Yang, W., Yuan, F., & Gao, Y. Effects of dynamic high-pressure microfluidization treatment and the presence of quercetagetin on the physical, structural, thermal, and morphological characteristics of zein nanoparticles. Food and Bioprocess Technology (2016)

  • Swer, T. L., Chauhan, K., Mukhim, C., Bashir, K., & Kumar, A. Application of anthocyanins extracted from Sohiong (Prunus nepalensis L.) in food processing. LWT - Food Science and Technology, 114: 108360 (2019)

  • Takahashi, M., Inafuku, K., Miyagi, T., Oku, H., Wada, K., Imura, T., & Kitamoto, D. Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method. Journal of Oleo Science, 56(1): 35-42 (2007)

    Article  CAS  Google Scholar 

  • Tarafdar, A., & Kaur, B. P. Sedimentation rate of microfluidized sugarcane juice. Lwt, 145(March): 1-5 (2021)

    Google Scholar 

  • Tarafdar, A., Kaur, B. P., & Pareek, S. Effect of microfluidization on deteriorative enzymes, sugars, chlorophyll, and color of sugarcane juice. Food and Bioprocess Technology, 14(7): 1375-1385 (2021)

    Article  CAS  Google Scholar 

  • Thompson, A. K. Structure and properties of liposomes prepared from milk phospholipids. Massey University, Palmerston North, New Zealand (2005)

    Google Scholar 

  • Thompson, A.K., & Singh, H. Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. Journal of Dairy Science. 89: 410-419 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Tobin, J., Heffernan, S. P., M.Mulvihill, D., Huppertz, T., & Kelly, A. L. Applications of high-pressure homogenization and microfluidization for milk and dairy products. In N. Datta & P. M. Tomasula (Eds.), Emerging Dairy Processing Technologies: Opportunities for the Dairy Industry (First, Vol. 18, p. 93-114) (2015)

  • Tosh, S. M., & Dalgleish, D. G. The physical properties and renneting characteristics of the synthetic membrane on the fat globules of microfluidized milk. Journal of Dairy Science. 81: 1840-1847 (1998)

    Article  CAS  Google Scholar 

  • Turhan, O., Isci, A., Mert, B., Sakiyan, O., & Donmez, S. Optimization of ethanol production from microfluidized wheat straw by response surface methodology. Preparative Biochemistry and Biotechnology. 45(8): 785-795 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Van Hekken, D. L., Iandola, S., & Tomasula, P. M. Short communication: Volatiles in microfluidized raw and heat-treated milk. Journal of Dairy Science. 102(10): 8819-8824 (2019)

    Article  PubMed  Google Scholar 

  • Verma, K., Tarafdar, A., & Badgujar, P. C. Microfluidics assisted tragacanth gum based sub-micron curcumin suspension and its characterization. LWT - Food Science and Technology. 135: 110269 (2021a)

  • Verma, K., Tarafdar, A., Mishra, V., Dilbaghi, N., Kondepudi, K. K., & Badgujar, P. C. Nanoencapsulated curcumin emulsion utilizing milk cream as a potential vehicle by microfluidization: Bioaccessibility, cytotoxicity and physico-functional properties. Food Research International. 148: 110611 (2021b)

  • Vuillemard, J. C. Recent advances in the large-scale production of lipid vesicles for use in food products: microfluidization. Journal of Microencapsulation. 8: 547-562 (1991)

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Sun, X., Zhou, Z., & Chen, G. Effects of microfluidization process on physicochemical properties of wheat bran. Food Research International. 48(2): 742-747 (2012)

    Article  Google Scholar 

  • Wang, T., Raddatz, J., & Chen, G. Effects of microfluidization on antioxidant properties of wheat bran. Journal of Cereal Science. 58: 380-386 (2013a)

    Article  CAS  Google Scholar 

  • Wang, T., Sun, X., Raddatz, J., & Chen, G. Effects of microfluidization on microstructure and physicochemical properties of corn bran. Journal of Cereal Science. 58: 355-361 (2013b)

    Article  CAS  Google Scholar 

  • Wang, N., Wu, L., Huang, S., Zhang, Y., Zhang, F., & Zheng, J. Combination treatment of bamboo shoot dietary fiber and dynamic high-pressure microfluidization on rice starch: Influence on physicochemical, structural, and in vitro digestion properties. Food Chemistry. 350: 128724 (2021)

  • Wang, W., Feng, Y., Chen, W., Adie, K., Liu, D., & Yin, Y. Citrus pectin modified by microfluidization and ultrasonication: Improved emulsifying and encapsulation properties. Ultrasonics Sonochemistry. 70: 105322 (2021)

  • Wei, Y., Wang, C., Liu, X., Mackie, A., Zhang, M., Dai, L., Liu, J., Mao, L., Yuan, F., & Gao, Y. Co-encapsulation of curcumin and β-carotene in pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocolloids. 107064 (2021)

  • Wu, Q., Wu, J., Ren, M., Zhang, X., & Wang, L. Modification of insoluble dietary fiber from rice bran with dynamic high pressure microfluidization: Cd(II) adsorption capacity and behavior. Innovative Food Science & Emerging Technologies. 73: 102765 (2021)

  • Yazdi, S. R. Changing the structure of casein micelles to improve the delivery of bioactive compounds. Theses & Dissertations, The University of Guelph (2012)

  • Yildiz, E., Demirkesen, I., & Mert, B. High pressure microfluidization of agro by-product to functionalized dietary fiber and evaluation as a novel bakery ingridient. Journal of Food Quality. 39: 599-610 (2016)

    Article  CAS  Google Scholar 

  • Yuce, Ö. Application of high dynamic microfluidization to improve some quality parameters and stability of orange juice. Middle East Technical University (2011)

  • Yuh-Fun, M., & Chung, C. H. Performance of sonication and microfluidization for liquid-liquid emulsification. Pharmaceutical Development and Technology. 4(2): 233-240 (1999)

    Article  Google Scholar 

  • Zhang, W., Xie, F., Lan, X., Gong, S., & Wang, Z. Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. Journal of Food Engineering. (2017)

  • Zhang, L., Chen, X., Wang, Y., Guo, F., Hu, S., Hu, J., Xiong, H., & Zhao, Q. Characteristics of rice dreg protein isolate treated by high-pressure microfluidization with and without proteolysis. Food Chemistry. 358: 129861 (2021)

  • Zhao, N., Liu, X., Sun, Y., Wang, Y., Pu, X., Qin, Y., Han, J., Sun, J., & He, Z. Factors affecting particle size of an intravenous fat emulsions. Asian Journal of Pharmaceutical Sciences. 5(4): 161-167 (2010)

    Google Scholar 

  • Zhao, Q., Yan, W., Liu, Y., & Li, J. Modulation of the structural and functional properties of perilla protein isolate from oilseed residues by dynamic high-pressure microfluidization. Food Chemistry. 365: 130497 (2021)

  • Zheng, L., He, M., Zhang, X., Regenstein, J. M., Wang, Z., Ma, Z., Kong, Y., Wu, C., Teng, F., & Li, Y. Gel properties and structural characteristics of soy protein isolate treated with different salt ions before spray drying combined with dynamic high-pressure micro-fluidization. Food and Bioproducts Processing. 125: 68-78 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Project Implementation Unit (TEQIP-III) is a unit of Ministry of Human Resource Development, Government of India and AICTE for support through CRS Project: Application ID (1-5746176711) under collaborative Research scheme

Author information

Authors and Affiliations

Author notes

  1. Anit Kumar and Atul Dhiman have contributed equally.

    Authors

    Corresponding authors

    Correspondence to Rachna Sehrawat or Ashutosh Upadhyay.

    Ethics declarations

    Conflict of interest

    Author and co-authors declare no conflict of interest.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Kumar, A., Dhiman, A., Suhag, R. et al. Comprehensive review on potential applications of microfluidization in food processing. Food Sci Biotechnol 31, 17–36 (2022). https://doi.org/10.1007/s10068-021-01010-x

    Download citation

    • Received:

    • Revised:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s10068-021-01010-x

    Keywords

    Navigation