Skip to main content

Advertisement

Log in

Natural compound library screening to identify berberine as a treatment for rheumatoid arthritis

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objective

Fibroblast-like synoviocytes (FLS) play a critical role on the exacerbation and deterioration of rheumatoid arthritis (RA). Aberrant activation of FLS pyroptosis signaling is responsible for the hyperplasia of synovium and destruction of cartilage of RA. This study investigated the screened traditional Chinese medicine berberine (BBR), an active alkaloid extracted from the Coptis chinensis plant, that regulates the pyroptosis of FLS and secretion of inflammatory factors in rheumatoid arthritis.

Methods

First, BBR was screened using a high-throughput drug screening strategy, and its inhibitory effect on RA-FLS was verified by in vivo and in vitro experiments. Second, BBR was intraperitoneally administrated into the collagen-induced arthritis rat model, and the clinical scores, arthritis index, and joint HE staining were evaluated. Third, synovial tissues of CIA mice were collected, and the expression of NLRP3, cleaved-caspase-1, GSDMD-N, Mst1, and YAP was detected by Western blot.

Results

The administration of BBR dramatically alleviated the severity of collagen-induced arthritis rat model with a decreased clinical score and inflammation reduction. In addition, BBR intervention significantly attenuates several pro-inflammatory cytokines (interleukin-1β, interleukin-6, interleukin-17, and interleukin-18). Moreover, BBR can reduce the pyroptosis response (caspase-1, NLR family pyrin domain containing 3, and gasdermin D) of the RA-FLS in vitro, activating the Hippo signaling pathway (Mammalian sterile 20-like kinase 1, yes-associated protein, and transcriptional enhanced associate domains) so as to inhibit the pro-inflammatory effect of RA-FLS.

Conclusion

These results support the role of BBR in RA and may have therapeutic implications by directly repressing the activation, migration of RA-FLS, which contributing to the attenuation of the progress of CIA. Therefore, targeting PU.1 might be a potential therapeutic approach for RA. Besides, BBR inhibited RA-FLS pyroptosis by downregulating of NLRP3 inflammasomes (NLRP3, caspase-1) and eased the pro-inflammatory activities via activating the Hippo signaling pathway, thereby improving the symptom of CIA.

Key Points

The administration of berberine (BBR) dramatically alleviated the severity of CIA model with a decreased clinic score and joint inflammation.

BBR inhibited the pyroptosis of RA-FLS by downregulating of NLRP3 inflammasomes and activating the Hippo signaling pathway, contributing to the suppression of RA progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

FLS:

Fibroblast-like synoviocytes

RA:

Rheumatoid arthritis

BBR:

Berberine

CIA:

Collagen-induced arthritis

HTDS:

High-throughput drug screening

CII:

Chicken type II collagen

AI:

Arthritis index

H&E:

Hematoxylin and eosin

IHC:

Immunohistochemistry

MPO:

Myeloperoxidase

PVDF:

Polyvinylidene fluoride

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Bao CX, Chen HX, Mou XJ, Zhu XK, Zhao Q, Wang XG (2018) GZMB gene silencing confers protection against synovial tissue hyperplasia and articular cartilage tissue injury in rheumatoid arthritis through the MAPK signaling pathway. Biomed Pharmacother 103:346–354. https://doi.org/10.1016/j.biopha.2018.04.023

    Article  PubMed  CAS  Google Scholar 

  2. Najm A, Masson FM, Preuss P, Georges S, Ory B, Quillard T, Sood S, Goodyear CS, Veale DJ, Fearon U, Le Goff B, Blanchard F (2020) MicroRNA-17-5p reduces inflammation and bone erosions in mice with collagen-induced arthritis and directly targets the JAK/STAT pathway in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol (Hoboken, N.J.) 72(12):2030–2039. https://doi.org/10.1002/art.41441

    Article  CAS  Google Scholar 

  3. Rao Y, Fang Y, Tan W, Liu D, Pang Y, Wu X, Zhang C, Li G (2020) Delivery of long non-coding rna NEAT1 by peripheral blood monouclear cells-derived exosomes promotes the occurrence of rheumatoid arthritis via the MicroRNA-23a/MDM2/SIRT6 axis. Front Cell Dev Biol 8:551681. https://doi.org/10.3389/fcell.2020.551681

    Article  PubMed  PubMed Central  Google Scholar 

  4. Möller B, Villiger PM (2006) Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. Springer Semin Immunopathol 27(4):391–408. https://doi.org/10.1007/s00281-006-0012-9

    Article  PubMed  CAS  Google Scholar 

  5. Cheng X, Huang T, Wang C, Hao S, Shu L, Wang S, Cheng G, Zhang Q, Huang J, Chen C (2022) Natural compound library screening identifies Oroxin A for the treatment of myocardial ischemia/reperfusion injury. Front Pharmacol 13:894899. https://doi.org/10.3389/fphar.2022.894899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schimmel K, Jung M, Foinquinos A, José GS, Beaumont J, Bock K, Grote-Levi L, Xiao K, Bär C, Pfanne A, Just A, Zimmer K, Ngoy S, López B, Ravassa S, Samolovac S, Janssen-Peters H, Remke J, Scherf K et al (2020) Natural compound library screening identifies new molecules for the treatment of cardiac fibrosis and diastolic dysfunction. Circulation 141(9):751–767. https://doi.org/10.1161/CIRCULATIONAHA.119.042559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nature Rev. Drug Discov 18(1):41–58. https://doi.org/10.1038/nrd.2018.168

    Article  CAS  Google Scholar 

  8. Parvathaneni V, Kulkarni NS, Muth A, Gupta V (2019) Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 24(10):2076–2085. https://doi.org/10.1016/j.drudis.2019.06.014

    Article  PubMed  CAS  Google Scholar 

  9. Tan XP, He Y, Huang YN, Zheng CC, Li JQ, Liu QW, He ML, Li B, Xu WW (2021) Lomerizine 2HCl inhibits cell proliferation and induces protective autophagy in colorectal cancer via the PI3K/Akt/mTOR signaling pathway. MedComm 2(3):453–466. https://doi.org/10.1002/mco2.83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Ezzati Nazhad Dolatabadi J, Hamblin MR (2020) Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces. 194:111188. https://doi.org/10.1016/j.colsurfb.2020.111188

    Article  PubMed  CAS  Google Scholar 

  11. Li DD, Yu P, Xiao W, Wang ZZ, Zhao LG (2020) Berberine: A promising natural isoquinoline alkaloid for the development of hypolipidemic drugs. Curr Rop Med Chem 20(28):2634–2647. https://doi.org/10.2174/1568026620666200908165913

    Article  CAS  Google Scholar 

  12. Wang K, Feng X, Chai L, Cao S, Qiu F (2017) The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev 49(2):139–157. https://doi.org/10.1080/03602532.2017.1306544

    Article  PubMed  CAS  Google Scholar 

  13. Li J, Wang L, Liu Y, Zeng P, Wang Y, Zhang Y (2020) Removal of berberine from wastewater by MIL-101(Fe): Performance and mechanism. ACS omega 5(43):27962–27971. https://doi.org/10.1021/acsomega.0c03422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tan W, Wang Y, Wang K, Wang S, Liu J, Qin X, Dai Y, Wang X, Gao X (2020) Improvement of endothelial dysfunction of berberine in atherosclerotic mice and mechanism exploring through TMT-based proteomics. Oxid Med Cell Longev 2020:8683404. https://doi.org/10.1155/2020/8683404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128. https://doi.org/10.1038/s41392-021-00507-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. He Y, Hara H, Núñez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41(12):1012–1021. https://doi.org/10.1016/j.tibs.2016.09.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhao LR, Xing RL, Wang PM, Zhang NS, Yin SJ, Li XC, Zhang L (2018) NLRP1 and NLRP3 inflammasomes mediate LPS/ATP-induced pyroptosis in knee osteoarthritis. Molecular Med Rep 17(4):5463–5469. https://doi.org/10.3892/mmr.2018.8520

    Article  CAS  Google Scholar 

  18. Ouyang T, Meng W, Li M, Hong T, Zhang N (2020) Recent advances of the Hippo/YAP signaling pathway in brain development and glioma. Cell Mol Neurobiol 40(4):495–510. https://doi.org/10.1007/s10571-019-00762-9

    Article  PubMed  CAS  Google Scholar 

  19. Ni L, Luo X (2019) Structural and biochemical analyses of the core components of the hippo pathway. Methods Mol Biol (Clifton, N.J.) 1893:239–256. https://doi.org/10.1007/978-1-4939-8910-2_18

    Article  CAS  Google Scholar 

  20. Wang Y, Jia A, Cao Y, Hu X, Wang Y, Yang Q, Bi Y, Liu G (2020) Hippo Kinases MST1/2 Regulate Immune Cell Functions in Cancer, Infection, and Autoimmune Diseases. Crit Rev Eukaryot Gene Exp 30(5):427–442. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020035775

    Article  Google Scholar 

  21. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122(3):421–434. https://doi.org/10.1016/j.cell.2005.06.007

    Article  PubMed  CAS  Google Scholar 

  22. Cheng X, Huang T, Wang C, Hao S, Shu L, Wang S, Cheng G, Zhang Q, Huang J, Chen C (2022) Natural compound library screening identifies Oroxin A for the treatment of myocardial ischemia/reperfusion injury. Front Pharmacol 13:894899. https://doi.org/10.3389/fphar.2022.894899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Remmers EF, Joe B, Griffiths MM, Dobbins DE, Dracheva SV, Hashiramoto A, Furuya T, Salstrom JL, Wang J, Gulko PS, Cannon GW, Wilder RL (2002) Modulation of multiple experimental arthritis models by collagen-induced arthritis quantitative trait loci isolated in congenic rat lines: different effects of non-major histocompatibility complex quantitative trait loci in males and females. Arthritis Rheum 46(8):2225–2234. https://doi.org/10.1002/art.10439

    Article  PubMed  CAS  Google Scholar 

  24. Miyoshi M, Liu S (2018) Collagen-induced arthritis models. Methods Mol Biol (Clifton, N.J.) 1868:3–7. https://doi.org/10.1007/978-1-4939-8802-0_1

    Article  CAS  Google Scholar 

  25. Haikal SM, Abdeltawab NF, Rashed LA, Abd El-Galil TI, Elmalt HA, Amin MA (2019) Combination therapy of mesenchymal stromal cells and interleukin-4 attenuates rheumatoid arthritis in a collagen-induced murine model. Cells 8(8):823. https://doi.org/10.3390/cells8080823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yan Y, Zhang H, Zhang Z, Song J, Chen Y, Wang X, He Y, Qin H, Fang L, Du G (2017) Pharmacokinetics and tissue distribution of coptisine in rats after oral administration by liquid chromatography-mass spectrometry. Biomed Chromatogr : BMC 31(7). https://doi.org/10.1002/bmc.3918.10.1002/bmc.3918

  27. Li F, Wang HD, Lu DX, Wang YP, Qi RB, Fu YM, Li CJ (2006) Neutral sulfate berberine modulates cytokine secretion and increases survival in endotoxemic mice. Acta Pharmacol Sin 27(9):1199–1205. https://doi.org/10.1111/j.1745-7254.2006.00368.x

    Article  PubMed  CAS  Google Scholar 

  28. Alehashemi S, Goldbach-Mansky R (2020) Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18. Front Immunol 11:1840. https://doi.org/10.3389/fimmu.2020.01840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu XY, Li KT, Yang HX, Yang B, Lu X, Zhao LD, Fei YY, Chen H, Wang L, Li J, Peng LY, Zheng WJ, Hou Y, Jiang Y, Shi Q, Zhang W, Zhang FC, Zhang JM, Huang B et al (2020) Complement C1q synergizes with PTX3 in promoting NLRP3 inflammasome over-activation and pyroptosis in rheumatoid arthritis. J Autoimm 106:102336. https://doi.org/10.1016/j.jaut.2019.102336

    Article  Google Scholar 

  30. Cheng L, Liang X, Qian L, Luo C, Li D (2021) NLRP3 gene polymorphisms and expression in rheumatoid arthritis. Ex Ther Med 22(4):1110. https://doi.org/10.3892/etm.2021.10544

    Article  CAS  Google Scholar 

  31. Sode J, Vogel U, Bank S, Andersen PS, Thomsen MK, Hetland ML, Locht H, Heegaard NH, Andersen V (2014) Anti-TNF treatment response in rheumatoid arthritis patients is associated with genetic variation in the NLRP3-inflammasome. PloS One 9(6):e100361. https://doi.org/10.1371/journal.pone.0100361

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Wang D, Zhang Y, Xu X, Wu J, Peng Y, Li J, Luo R, Huang L, Liu L, Yu S, Zhang N, Lu B, Zhao K (2021) YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun 12(1):2674. https://doi.org/10.1038/s41467-021-22987-3

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jiang F, Gong T, Chen J, Chen T, Yang J, Zhu P (2021) Sheng wu gong cheng xue bao =. Chin J Biotechnol 37(6):1931–1951. https://doi.org/10.13345/j.cjb.210138

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Gansu Administration of Traditional Chinese Medicine (GZKP-2021-30); Lanzhou Science and Technology Bureau, science and technology planning project of Lanzhou (2020-XG-59); the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital (No. CY2021-QN-B10); National Natural Science Foundation of China (No. 8196060067); Science and Technology Project of Gansu Province, Natural Science Foundation(22JR5RA955); Education Technology Innovation Project of Gansu Province, Young Doctor Foundation(2022B-057).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: LZ, H-LS

Acquisition of data: LZ, MT, JM, X-YW, J-YH

Analysis and interpretation of the data: LZ, JZ, YZ, R-XD

Statistical analysis: JM, MT

Obtaining financing: LZ, H-LS

Writing of the manuscript: LZ

Critical revision of the manuscript for intellectual content: LZ, H-LS

All authors read and approved the final draft. All authors have contributed significantly to the manuscript.

Corresponding author

Correspondence to Hai-Li Shen.

Ethics declarations

Ethics approval and consent to participation

The study was conducted in accordance with the Declaration of Helsinki (as was revised in 2013). The study was approved by Ethics Committee of the Lanzhou University Second Hospital. Written informed consent was obtained from all participants. The study protocol was approved by the Laboratory Animal Ethics Committee of Lanzhou University Second Hospital and carried out according to the US Department of Health’s Guidelines for the Use and Care of Laboratory Animals.

Consent for publication

Not applicable.

Disclosures

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is original and has not been submitted or published elsewhere.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Tan, M., Mao, J. et al. Natural compound library screening to identify berberine as a treatment for rheumatoid arthritis. Clin Rheumatol 43, 959–969 (2024). https://doi.org/10.1007/s10067-024-06871-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-024-06871-1

Keywords

Navigation