Skip to main content

Advertisement

Log in

Bavachinin Ameliorates Rheumatoid Arthritis Inflammation via PPARG/PI3K/AKT Signaling Pathway

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Bavachinin (BVC) is a natural small molecule from the Chinese herb Fructus Psoraleae. It exhibits numerous pharmacological effects, including anti-cancer, anti-inflammation, anti-oxidation, anti-bacterial, anti-viral, and immunomodulatory properties. BVC may serve as a novel drug candidate for the treatment of rheumatoid arthritis (RA). Nevertheless, the effects and mechanisms of BVC against RA are still unknown. BVC targets were selected by Swiss Target Prediction and the PharmMapper database. RA-related targets were collected from the GeneCards, OMIM, DrugBank, TTD, and DisGeNET databases. PPI network construction and enrichment analysis were conducted by taking the intersection target of BVC targets and RA-related targets. Hub targets were further screened using Cytoscape and molecular docking. MH7A cell lines and collagen‐induced arthritis (CIA) mice were used to confirm the preventive effect of BVC on RA and its potential mechanism. Fifty-six RA-related targets of BVC were identified through databases. These genes were primarily enriched in PI3K/AKT signaling pathway according to KEGG enrichment analysis. Molecular docking analysis suggested that BVC had the highest binding energy with PPARG. The qPCR and western blotting results showed that BVC promoted the expression of PPARG at both the mRNA level and protein level. Western blotting indicated that BVC might affect MH7A cell functions through the PI3K/AKT pathway. Furthermore, treatment with BVC inhibited the proliferation, migration, and production of inflammatory cytokines in MH7A cells and induced cell apoptosis to a certain extent. In vivo, BVC alleviated joint injury and inflammatory response in CIA mice. This study revealed that BVC may inhibit the proliferation, migration, and production of inflammatory cytokines in MH7A cells, as well as cell apoptosis through the PPARG/PI3K/AKT signaling pathway. These findings provide a theoretical foundation for RA therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets and materials used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

RA:

Rheumatoid arthritis

BVC:

Bavachinin

FLSs:

Fibroblast-like synoviocytes

TCM:

Traditional Chinese medicines

CIA:

Collagen‐induced arthritis

PPARG:

Peroxisome proliferator-activated receptor-gamma

TNF-α:

Tumor necrosis factor alpha

IL‐1β:

Interleukin 1β

IL‐6:

Interleukin 6

IL-10:

Interleukin 10

MMP2:

Matrix metalloproteinas 2

PI3K:

Phosphatidylinositol 3-kinase

p-PI3K:

Phospho-PI3K

AKT:

Protein kinase B

p-AKT:

Phospho‐AKT

CytC:

Cytochrome C

Bcl-2:

Reactive oxygen species B‐cell lymphoma 2

Bax:

Bcl2‐associated X protein

Bad:

Bcl2-associated agonist of cell death

ESR1:

Estrogen receptor alpha

MAPK1:

mitogen-activated protein kinase

SERPINE1:

Plasminogen activator inhibitor-1

References

  1. McInnes, I., and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. The New England journal of medicine. 365 (23): 2205–2219. https://doi.org/10.1056/NEJMra1004965.

    Article  CAS  PubMed  Google Scholar 

  2. Singh, J., D. Furst, A. Bharat, et al. 2012. 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis care & research. 64 (5): 625–639. https://doi.org/10.1002/acr.21641.

    Article  CAS  Google Scholar 

  3. Smolen, J., R. Landewé, F. Breedveld, et al. 2014. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Annals of the Rheumatic Diseases 73 (3): 492–509. https://doi.org/10.1136/annrheumdis-2013-204573.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, D., and M. Weinblatt. 2001. Rheumatoid arthritis. Lancet (London, England). 358 (9285): 903–911. https://doi.org/10.1016/s0140-6736(01)06075-5.

    Article  CAS  PubMed  Google Scholar 

  5. Xu, H., S. Zheng, and D. Fox. 2020. Editorial: Immunomodulatory functions of fibroblast-like synoviocytes in joint inflammation and destruction during rheumatoid arthritis. Frontiers in Immunology 11: 955. https://doi.org/10.3389/fimmu.2020.00955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bottini, N., and G. Firestein. 2013. Duality of fibroblast-like synoviocytes in RA: Passive responders and imprinted aggressors. Nature Reviews Rheumatology 9 (1): 24–33. https://doi.org/10.1038/nrrheum.2012.190.

    Article  CAS  PubMed  Google Scholar 

  7. Falconer, J., A. Murphy, S. Young, et al. 2018. Review: Synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis & Rhematology 70 (7): 984–999. https://doi.org/10.1002/art.40504.

    Article  CAS  Google Scholar 

  8. Samarpita, S., R. Ganesan, and M. Rasool. 2020. Cyanidin prevents the hyperproliferative potential of fibroblast-like synoviocytes and disease progression via targeting IL-17A cytokine signalling in rheumatoid arthritis. Toxicology and Applied Pharmacology 391: 114917. https://doi.org/10.1016/j.taap.2020.114917.

  9. Ma, J.-D., J. Jing, J.W. Wang, et al. 2019. A novel function of artesunate on inhibiting migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Research and Therapy 21 (1). https://doi.org/10.1186/s13075-019-1935-6.

  10. Gan, D., W. Cheng, L. Ke, et al. 2021. Taraxasterol suppresses inflammation in IL-1beta-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Frontier Pharmacology 12: 631891. https://doi.org/10.3389/fphar.2021.631891.

  11. Meng, M., Z. Yue, L. Chang, et al. 2021. Anti-rheumatoid arthritic effects of Paris saponin VII in human rheumatoid arthritis fibroblast-like synoviocytes and adjuvant-induced arthritis in rats. Frontier Pharmacology 12: 683698. https://doi.org/10.3389/fphar.2021.683698.

  12. Commission, C.P. 2015. Chinese Pharmacopoeia (2015, VolumeI), 187. Beijing: Chinese Medicine Science and Technology Press.

    Google Scholar 

  13. Zhou, Y.-T., L. Zhu, Y. Yuan, et al. 2020. Effects and mechanisms of five Psoralea prenylflavonoids on aging-related diseases. Oxidative Medicine and Cellular Longevity. 2020: 2128513. https://doi.org/10.1155/2020/2128513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, Q., Y. Li, and Z. Chen. 2012. Separation, identification, and quantification of active constituents in by high-performance liquid chromatography with UV, ion trap mass spectrometry, and electrochemical detection. J Pharm Anal. 2 (2): 143–151. https://doi.org/10.1016/j.jpha.2011.11.005.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X., Y. Yang, and Y. Zhang. 2013. Isobavachalcone and bavachinin from Psoraleae Fructus modulate Aβ42 aggregation process through different mechanisms in vitro. FEBS Letters. 587 (18): 2930–2935. https://doi.org/10.1016/j.febslet.2013.07.037.

    Article  CAS  PubMed  Google Scholar 

  16. Hung, S.-Y., S.-C. Lin, S. Wang, et al. 2021. Bavachinin induces G2/M cell cycle arrest and apoptosis via the ATM/ATR signaling pathway in human small cell lung cancer and shows an antitumor effect in the xenograft model. Journal of Agricultural and Food Chemistry. 69 (22): 6260–6270. https://doi.org/10.1021/acs.jafc.1c01657.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuda, H., S. Kiyohara, S. Sugimoto, et al. 2009. Bioactive constituents from Chinese natural medicines. XXXIII. Inhibitors from the seeds of Psoralea corylifolia on production of nitric oxide in lipopolysaccharide-activated macrophages. Biological and Pharmaceutical Bulletin 32 (1): 147–149.

  18. Nepal, M., H.J. Choi, B.-Y. Choi, et al. 2012. Anti-angiogenic and anti-tumor activity of bavachinin by targeting hypoxia-inducible factor-1α. European Journal of Pharmacology. 691 (1–3): 28–37. https://doi.org/10.1016/j.ejphar.2012.06.028.

    Article  CAS  PubMed  Google Scholar 

  19. Pai, J.-T., M.W. Hsu, Y.L. Leu, et al. 2021. Induction of G2/M cell cycle arrest via p38/p21-dependent signaling pathway activation by bavachinin in non-small-cell lung cancer cells. Molecules 26 (17). https://doi.org/10.3390/molecules26175161.

  20. Zhao, C., B. Ghosh, T. Chakraborty, et al. 2021. Bavachinin mitigates DMH induced colon cancer in rats by altering p53/Bcl2/BAX signaling associated with apoptosis. Biotechnic & histochemistry : Official publication of the Biological Stain Commission. 96 (3): 179–190. https://doi.org/10.1080/10520295.2020.1778087.

    Article  CAS  Google Scholar 

  21. Chen, X., T. Wen, J. Wei, et al. 2013. Treatment of allergic inflammation and hyperresponsiveness by a simple compound, bavachinin, isolated from Chinese herbs. Cellular & Molecular Immunology. 10 (6): 497–505. https://doi.org/10.1038/cmi.2013.27.

    Article  CAS  Google Scholar 

  22. Poornima, P., J.D. Kumar, Q. Zhao, et al. 2016. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacological Research. 111: 290–302. https://doi.org/10.1016/j.phrs.2016.06.018.

    Article  CAS  PubMed  Google Scholar 

  23. Yang, S., J. Zhang, Y. Yan, et al. 2019. Network pharmacology-based strategy to investigate the pharmacologic mechanisms of Koidz. for the Treatment of Chronic Gastritis. Frontier Pharmacology 10, 1629. https://doi.org/10.3389/fphar.2019.01629.

  24. Hopkins, A.L. 2008. Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology 4 (11): 682–690. https://doi.org/10.1038/nchembio.118.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, S., J. Chen, T. Cheng, et al. 2021. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research 49 (D1): D1388–D1395. https://doi.org/10.1093/nar/gkaa971.

    Article  CAS  PubMed  Google Scholar 

  26. Daina, A., O. Michielin, and V. Zoete. 2019. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research 47 (W1): W357–W364. https://doi.org/10.1093/nar/gkz382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, X., Y. Shen, S. Wang, et al. 2017. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Research 45 (W1): W356–W360. https://doi.org/10.1093/nar/gkx374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rappaport, N., M. Twik, I. Plaschkes, et al. 2017. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Research 45 (D1): D877–D887. https://doi.org/10.1093/nar/gkw1012.

    Article  CAS  PubMed  Google Scholar 

  29. Wishart, D. S., Y.D. Feunang, A.C. Guo, et al. 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research 46 (D1): D1074–D1082. https://doi.org/10.1093/nar/gkx1037.

  30. Zhou, Y., Y. Zhang, X. Lian, et al. 2022. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Research 50 (D1): D1398–D1407. https://doi.org/10.1093/nar/gkab953.

    Article  CAS  PubMed  Google Scholar 

  31. Piñero, J., J.M. Ramírez-Anguita, J. Saüch-Pitarch, et al. 2020. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Research 48 (D1): D845–D855. https://doi.org/10.1093/nar/gkz1021.

    Article  CAS  PubMed  Google Scholar 

  32. UniProt: the universal protein knowledgebase in 2021. 2021. Nucleic Acids Research 49 (D1): D480–D489. https://doi.org/10.1093/nar/gkaa1100.

  33. Firestein, G.S. 2003. Evolving concepts of rheumatoid arthritis. Nature 423 (6937): 356–361. https://doi.org/10.1038/nature01661.

    Article  CAS  PubMed  Google Scholar 

  34. Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunological Reviews 233 (1): 233–255. https://doi.org/10.1111/j.0105-2896.2009.00859.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Filer, A., L.S.C. Ward, S. Kemble, et al. 2017. Identification of a transitional fibroblast function in very early rheumatoid arthritis. Annals of the Rheumatic Diseases 76 (12): 2105–2112. https://doi.org/10.1136/annrheumdis-2017-211286.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, L.-M., J.J. Zhou and C.L. Luo. 2018. CYLD suppression enhances the pro-inflammatory effects and hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes by enhancing NF-κB activation. Arthritis Research and Therapy 20 (1): 219. https://doi.org/10.1186/s13075-018-1722-9.

  37. Zhu, S.-L., J.-L. Huang, W.-X. Peng, et al. 2017. Inhibition of smoothened decreases proliferation of synoviocytes in rheumatoid arthritis. Cellular & Molecular Immunology. 14 (2): 214–222. https://doi.org/10.1038/cmi.2015.67.

    Article  CAS  Google Scholar 

  38. Leverson, J. D., D.C. Phillips, M.J. Mitten, et al. 2015. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Science Translational Medicine 7 (279): 279ra40. https://doi.org/10.1126/scitranslmed.aaa4642.

  39. Mahajan, S.D., V.M. Tutino, Y. Redae, et al. 2016. C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus. Immunology 148 (4): 407–419. https://doi.org/10.1111/imm.12619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsuruta, F., N. Masuyama, and Y. Gotoh. 2002. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. Journal of Biological Chemistry 277 (16): 14040–14047. https://doi.org/10.1074/jbc.M108975200.

    Article  CAS  PubMed  Google Scholar 

  41. Carneiro, B.A., and W.S. El-Deiry. 2020. Targeting apoptosis in cancer therapy. Nature Reviews. Clinical Oncology 17 (7): 395–417. https://doi.org/10.1038/s41571-020-0341-y.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pickens, S.R., M.V. Volin, A.M. Mandelin, et al. 2010. IL-17 contributes to angiogenesis in rheumatoid arthritis. The Journal of Immunology 184 (6): 3233–3241. https://doi.org/10.4049/jimmunol.0903271.

    Article  CAS  PubMed  Google Scholar 

  43. Brennan, F.M., and I.B. McInnes. 2008. Evidence that cytokines play a role in rheumatoid arthritis. The Journal of Clinical Investigation 118 (11): 3537–3545. https://doi.org/10.1172/JCI36389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davignon, J.-L., B. Rauwel, Y. Degboé, et al. 2018. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Research and Therapy 20 (1): 229. https://doi.org/10.1186/s13075-018-1725-6.

  45. Sur, B., S. Kang, M. Kim, et al. 2019. Inhibition of carrageenan/kaolin-induced arthritis in rats and of inflammatory cytokine expressions in human IL-1β-stimulated fibroblast-like synoviocytes by a benzylideneacetophenone derivative. Inflammation 42 (3): 928–936. https://doi.org/10.1007/s10753-018-0947-8.

    Article  CAS  PubMed  Google Scholar 

  46. Ruderman, E.M. 2015. Rheumatoid arthritis: IL-6 inhibition in RA–déjà vu all over again? Nature Reviews Rheumatology 11 (6): 321–322. https://doi.org/10.1038/nrrheum.2015.58.

    Article  CAS  PubMed  Google Scholar 

  47. Mitchell, J., S.J. Kim, G. Koukos, et al. 2018. Colonic inhibition of phosphatase and tensin homolog increases colitogenic bacteria, causing development of colitis in Il10-/- mice. Inflammatory Bowel Diseases 24 (8): 1718–1732. https://doi.org/10.1093/ibd/izy124.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Borges, G.R., D.A. Morgan, P. Ketsawatsomkron, et al. 2014. Interference with peroxisome proliferator-activated receptor-γ in vascular smooth muscle causes baroreflex impairment and autonomic dysfunction. Hypertension 64 (3): 590–596. https://doi.org/10.1161/HYPERTENSIONAHA.114.03553.

    Article  CAS  PubMed  Google Scholar 

  49. Pestereva, E., S. Kanakasabai, and J.J. Bright. 2012. PPARγ agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells. British Journal of Cancer 106 (10): 1702–1712. https://doi.org/10.1038/bjc.2012.161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, X.-F., Y.Y. Sun, J. Bao, et al. 2017. Functional role of PPAR-γ on the proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis. Scientific Reports 7 (1): 12671. https://doi.org/10.1038/s41598-017-12570-6.

  51. Li, X.-F., S.-Q. Yin, H. Li, et al. 2022. PPAR-γ alleviates the inflammatory response in TNF-α-induced fibroblast-like synoviocytes by binding to p53 in rheumatoid arthritis. Acta Pharmacologica Sinica. https://doi.org/10.1038/s41401-022-00957-9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yang, H., Y. Luo, and X. Lai. 2022. Il-34 regulates MAPKs, PI3K/Akt, JAK and NF-κB pathways and induces the expression of inflammatory factors in RA-FLS. Clinical and Experimental Rheumatology 40 (9): 1779–1788. https://doi.org/10.55563/clinexprheumatol/6t1d4i.

  53. Li, X., and Y. Wang. 2020. Cinnamaldehyde attenuates the progression of rheumatoid arthritis through down-regulation of PI3K/AKT signaling pathway. Inflammation 43 (5): 1729–1741. https://doi.org/10.1007/s10753-020-01246-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of China (31701104), the National Undergraduate Innovation and Entrepreneurship Program (202213705019), and the Chengdu Medical College Graduate Student Innovation Fund (YCX2022-03–04).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.-D. and W.-K.S.; Investigation, H.-D.and J.S.; Methodology, H.-D.and L.-J.W.; Supervision, W.-K.S.; Visualization, H.-D., J.J., and L.-J.W.; Experimental validation, H.-D., J.J., and M.-H.; Writing—original draft, H.-D.; Writing—review and editing, W.-K.S., Q.-L.Z., and L.-J.W. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Li-Juan Wu or Wen-Kui Sun.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the Ethics Committee for Animal Experiments of Chengdu Medical College.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2089 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Jiang, J., Shu, J. et al. Bavachinin Ameliorates Rheumatoid Arthritis Inflammation via PPARG/PI3K/AKT Signaling Pathway. Inflammation 46, 1981–1996 (2023). https://doi.org/10.1007/s10753-023-01855-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01855-w

KEY WORDS

Navigation