Skip to main content

Advertisement

Log in

Analysis of microRNA-199a-3p expression in CD4+ T cells of systemic lupus erythematosus

  • ORIGINAL ARTICLE
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

Accumulating evidence have suggested microRNAs (miRNAs) play important roles in the pathogenesis of systemic lupus erythematosus (SLE). Here we aimed to explore aberrant expression of miRNAs in CD4+ T cells from SLE patients and their potential function in SLE pathogenesis.

Methods

First, next-generation sequencing was performed on CD4+ T cells from four SLE patients and three healthy controls (HCs). Candidate miRNAs were then validated in CD4+ T cells from 97 patients with SLE, 16 patients with rheumatoid arthritis, and 12 HCs using qRT-PCR. Then the relationship between the candidate miRNA and clinical characteristics was analyzed. Bioinformatics analysis and validation of the target genes of the candidate miRNA were performed.

Results

A total of 66 upregulated miRNAs and 70 downregulated miRNAs were found between SLE and normal CD4+ T cells samples. miR-199a-3p was identified significant upregulation in the CD4+ T cells of lupus patients. High expression of miR-199a-3p was correlated with several clinical characteristics including low C3 level, positive anti-dsDNA antibody, high ESR level, active lupus nephritis, and active disease activity. When distinguishing active LN from non-LN or active lupus from stable lupus, the AUCs of miR-199a-3p were 0.68 and 0.70, respectively. And the expression of miR-199a-3p, involved in JAK-STAT signaling pathway, was negatively correlated with the STAM expression in CD4+ T cells of SLE.

Conclusion

Our study suggested a novel and promising role of miR-199a-3p in CD4+ T cells for SLE. Further studies are needed to precisely determine the function of miR-199a-3p in this disease.

Key Points

• Aberrant expression of miRNAs in CD4+ T cells and their potential function in SLE pathogenesis remained unclear.

• miR-199a-3p in CD4+ T cells plays a novel role in the pathogenesis of SLE and serves as a potential target for SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this article and its Supplementary materials.

References

  1. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121. https://doi.org/10.1056/NEJMra1100359

    Article  CAS  PubMed  Google Scholar 

  2. Doria A, Gatto M, Zen M, Iaccarino L, Punzi L (2014) Optimizing outcome in SLE: treating-to-target and definition of treatment goals. Autoimmun Rev 13(7):770–777. https://doi.org/10.1016/j.autrev.2014.01.055

    Article  CAS  PubMed  Google Scholar 

  3. Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC (2017) Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 23(7):615–635. https://doi.org/10.1016/j.molmed.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morel L (2017) Immunometabolism in systemic lupus erythematosus. Nat Rev Rheumatol 13(5):280–290. https://doi.org/10.1038/nrrheum.2017.43

    Article  CAS  PubMed  Google Scholar 

  5. Teng X, Brown J, Choi SC, Li W, Morel L (2020) Metabolic determinants of lupus pathogenesis. Immunol Rev 295(1):167–186. https://doi.org/10.1111/imr.12847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yin Y, Choi SC, Xu Z, Perry DJ, Seay H, Croker BP, Sobel ES, Brusko TM, Morel L (2015) Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 7(274):274ra218. https://doi.org/10.1126/scitranslmed.aaa0835

    Article  CAS  Google Scholar 

  7. Berretta F, St-Pierre J, Piccirillo CA, Stevenson MM (2011) IL-2 contributes to maintaining a balance between CD4+Foxp3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection. J Immunol 186(8):4862–4871. https://doi.org/10.4049/jimmunol.1003777

    Article  CAS  PubMed  Google Scholar 

  8. Moulton VR, Tsokos GC (2015) T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 125(6):2220–2227. https://doi.org/10.1172/jci78087

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang Z, Chang C, Lu Q (2017) Epigenetics of CD4+ T cells in autoimmune diseases. Curr Opin Rheumatol 29(4):361–368. https://doi.org/10.1097/bor.0000000000000393

    Article  CAS  PubMed  Google Scholar 

  10. Geng G, Wang H, Xin W, Liu Z, Chen J, Danting Z, Han F, Ye S (2021) tRNA derived fragment (tRF)-3009 participates in modulation of IFN-α-induced CD4(+) T cell oxidative phosphorylation in lupus patients. J Transl Med 19(1):305. https://doi.org/10.1186/s12967-021-02967-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schetter AJ, Heegaard NH, Harris CC (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31(1):37–49. https://doi.org/10.1093/carcin/bgp272

    Article  CAS  PubMed  Google Scholar 

  12. Stypinska B, Paradowska-Gorycka A (2015) Cytokines and MicroRNAs as candidate biomarkers for systemic lupus erythematosus. Int J Mole Sci 16(10):24194–24218. https://doi.org/10.3390/ijms161024194

    Article  CAS  Google Scholar 

  13. Carlsen AL, Schetter AJ, Nielsen CT, Lood C, Knudsen S, Voss A, Harris CC, Hellmark T, Segelmark M, Jacobsen S, Bengtsson AA, Heegaard NH (2013) Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum 65(5):1324–1334. https://doi.org/10.1002/art.37890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan L, Jiang L, Wang B, Hu Q, Deng S, Huang J, Sun X, Zhang Y, Feng L, Chen W (2022) Novel microRNA biomarkers of systemic lupus erythematosus in plasma: miR-124-3p and miR-377-3p. Clin Biochem 107:55–61. https://doi.org/10.1016/j.clinbiochem.2022.05.004

    Article  CAS  PubMed  Google Scholar 

  15. Singh RP, Hahn BH, Bischoff DS (2022) Identification and contribution of inflammation-induced novel MicroRNA in the pathogenesis of systemic lupus erythematosus. Front Immunol 13:848149. https://doi.org/10.3389/fimmu.2022.848149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725. https://doi.org/10.1002/art.1780400928

    Article  CAS  PubMed  Google Scholar 

  17. van der Heijde D, Aletaha D, Carmona L, Edwards CJ, Kvien TK, Kouloumas M, Machado P, Oliver S, de Wit M, Dougados M (2015) 2014 Update of the EULAR standardised operating procedures for EULAR-endorsed recommendations. Ann Rheum Dis 74(1):8–13. https://doi.org/10.1136/annrheumdis-2014-206350

    Article  PubMed  Google Scholar 

  18. Gladman DD, Ibañez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29(2):288–291

    PubMed  Google Scholar 

  19. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, Bruce IN, Isenberg D, Wallace DJ, Nived O, Sturfelt G, Ramsey-Goldman R, Bae SC, Hanly JG, Sánchez-Guerrero J, Clarke A, Aranow C, Manzi S, Urowitz M, Gladman D, Kalunian K, Costner M, Werth VP, Zoma A, Bernatsky S, Ruiz-Irastorza G, Khamashta MA, Jacobsen S, Buyon JP, Maddison P, Dooley MA, van Vollenhoven RF, Ginzler E, Stoll T, Peschken C, Jorizzo JL, Callen JP, Lim SS, Fessler BJ, Inanc M, Kamen DL, Rahman A, Steinsson K, Franks AG Jr, Sigler L, Hameed S, Fang H, Pham N, Brey R, Weisman MH, McGwin G Jr, Magder LS (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686. https://doi.org/10.1002/art.34473

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. Rna 10(10):1507–1517. https://doi.org/10.1261/rna.5248604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo G, Wang H, Shi X, Ye L, Wu K, Lin K, Ye S, Li B, Zhang H, Lin Q, Ye S, Xue X, Chen C (2018) NovelmiRNA-25 inhibits AMPD2 in peripheral blood mononuclear cells of patients with systemic lupus erythematosus and represents a promising novel biomarker. J Transl Med 16(1):370. https://doi.org/10.1186/s12967-018-1739-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su X, Ye L, Chen X, Zhang H, Zhou Y, Ding X, Chen D, Lin Q, Chen C (2019) MiR-199-3p promotes ERK-mediated IL-10 production by targeting poly (ADP-ribose) Polymerase-1 in patients with systemic lupus erythematosus. Chem Biol Interact 306:110–116. https://doi.org/10.1016/j.cbi.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  23. Ye H, Su B, Ni H, Li L, Chen X, You X, Zhang H (2018) microRNA-199a may be involved in the pathogenesis of lupus nephritis via modulating the activation of NF-κB by targeting Klotho. Mol Immunol 103:235–242. https://doi.org/10.1016/j.molimm.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Xiong A, Wang J, Mao XL, Jiang Y, Fan Y (2019) MiR-199a-3p modulates the function of dendritic cells involved in transplantation tolerance by targeting CD86. Hla 94(6):493–503. https://doi.org/10.1111/tan.13677

    Article  CAS  PubMed  Google Scholar 

  25. Alunno A, Padjen I, Fanouriakis A, Boumpas DT (2019) Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cells 8(8). https://doi.org/10.3390/cells8080898

  26. Dang WZ, Li H, Jiang B, Nandakumar KS, Liu KF, Liu LX, Yu XC, Tan HJ, Zhou C (2019) Therapeutic effects of artesunate on lupus-prone MRL/lpr mice are dependent on T follicular helper cell differentiation and activation of JAK2-STAT3 signaling pathway. Phytomedicine 62:152965. https://doi.org/10.1016/j.phymed.2019.152965

    Article  CAS  PubMed  Google Scholar 

  27. Zan H, Tat C, Casali P (2014) MicroRNAs in lupus. Autoimmunity 47(4):272–285. https://doi.org/10.3109/08916934.2014.915955

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tao B, Xiang W, Li X, He C, Chen L, Xia X, Peng T, Peng L, Yang X, Zhong C (2021) Regulation of Toll-like receptor-mediated inflammatory response by microRNA-152-3p-mediated demethylation of MyD88 in systemic lupus erythematosus. Inflamm Res 70(3):285–296. https://doi.org/10.1007/s00011-020-01433-y

    Article  CAS  PubMed  Google Scholar 

  29. Karantanos T, Christofides A, Bardhan K, Li L, Boussiotis VA (2016) Corrigendum: regulation of T cell differentiation and function by EZH2. Front Immunol 7:346. https://doi.org/10.3389/fimmu.2016.00346

    Article  PubMed  PubMed Central  Google Scholar 

  30. You H, Xu D, Zhao J, Li J, Wang Q, Tian X, Li M, Zeng X (2020) JAK inhibitors: prospects in connective tissue diseases. Clin Rev Allergy Immunol 59(3):334–351. https://doi.org/10.1007/s12016-020-08786-6

    Article  PubMed  Google Scholar 

  31. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77(5):521–546. https://doi.org/10.1007/s40265-017-0701-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ryu H, Kim J, Kim D, Lee JE, Chung Y (2019) Cellular and molecular links between autoimmunity and lipid metabolism. Mol Cells 42(11):747–754. https://doi.org/10.14348/molcells.2019.0196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mesilaty-Gross S, Reich A, Motro B, Wides R (1999) The Drosophila STAM gene homolog is in a tight gene cluster, and its expression correlates to that of the adjacent gene ial. Gene 231(1–2):173–186. https://doi.org/10.1016/s0378-1119(99)00053-0

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe S, Itoh T, Arai K (1996) JAK2 is essential for activation of c-fos and c-myc promoters and cell proliferation through the human granulocyte-macrophage colony-stimulating factor receptor in BA/F3 cells. J Biol Chem 271(21):12681–12686. https://doi.org/10.1074/jbc.271.21.12681

    Article  CAS  PubMed  Google Scholar 

  35. Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB (2007) Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16(12):939–946. https://doi.org/10.1177/0961203307084158

    Article  CAS  PubMed  Google Scholar 

  36. Ghadiri N, Emamnia N, Ganjalikhani-Hakemi M, Ghaedi K, Etemadifar M, Salehi M, Shirzad H, Nasr-Esfahani MH (2018) Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4+T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene 659:109–117. https://doi.org/10.1016/j.gene.2018.03.035

    Article  CAS  PubMed  Google Scholar 

  37. Chen R, Alvero AB, Silasi DA, Kelly MG, Fest S, Visintin I, Leiser A, Schwartz PE, Rutherford T, Mor G (2008) Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 27(34):4712–4723. https://doi.org/10.1038/onc.2008.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all patients and healthy donors who participated in this study.

Funding

This research was supported by the Clinical Research Plan of SHDC (SHDC2020CR1015B) to YS and Cultivating Funds of Renji Hospital South Campus, Shanghai Jiaotong University School of Medicine (2016PWGZR05) to GG.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Ye had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study conception and design. WH, YS.

Acquisition of data. WH, GG, ZD, HF.

Analysis and interpretation of data. WH, GG, YS.

Corresponding author

Correspondence to Shuang Ye.

Ethics declarations

Disclosures

None.

Ethics approval and consent to participate

The research protocol was approved by the Renji Hospital of Shanghai Jiaotong University School of Medicine. All subjects who participated in this study provided written informed consent.

Consent for publication

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 121 KB)

Supplementary file2 (PDF 371 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Geng, G., Zhang, D. et al. Analysis of microRNA-199a-3p expression in CD4+ T cells of systemic lupus erythematosus. Clin Rheumatol 42, 1683–1694 (2023). https://doi.org/10.1007/s10067-023-06534-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06534-7

Keywords

Navigation