Skip to main content

Advertisement

Log in

The aberrant expression of CD45 isoforms and levels of sex hormones in systemic lupus erythematosus

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

Systemic lupus erythematosus (SLE) is a common autoimmune disease with significant gender bias in women, and sex hormones are considered to play an important role in the regulation of immune activity. The CD45 isoforms generated through alternative splicing of mRNA identify different functional status of lymphocytes and also are suggested as a biomarker for assessing the progression of SLE, while the modulation of CD45 expression in SLE patients is not clear.

Methods

In this study, the peripheral blood sera of 46 SLE patients and 15 health individuals were collected for detecting the levels of sex hormones and immune associated factors. The expression of CD45 isoforms and the status of CD45 DNA methylation of the peripheral mononuclear blood cells were detected by flow cytometry and bisulfite sequencing PCR, respectively.

Results

The levels of complement C3 and IgA decreased, especially decline of the serum IgA to the level of selective immunoglobulin A deficiency, and the C-reactive protein increased in SLE patients when compared with healthy controls, which manifested the abnormal immune activity of the SLE patients. Sex hormones detection showed a decreased testosterone and increased prolactin in SLE. An accelerated expression of CD45RO, reduced CD45RA and CD45RB, and a relative hypermethylation of CD45 DNA in SLE were also identified that provided a clue to explain the possible regulatory mechanism for the immune function in SLE.

Conclusion

The results indicated that the aberrant CD45 isoforms, DNA methylation and hormone levels might be correlated with the imbalanced immune activity of SLE patients.

Key Points

Selective immunoglobulin A deficiency was significantly higher in SLE than in healthy individuals.

SLE patients had decreased testosterone and increased prolactin in the sera.

An aberrant expression of CD45 isoforms and CD45 DNA methylation were identified in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available to the author group.

References

  1. Yu C, Gershwin ME, Chang C (2014) Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 48–49:10–13. https://doi.org/10.1016/j.jaut.2014.01.004

    Article  PubMed  CAS  Google Scholar 

  2. Bengtsson AA, Rönnblom L (2017) Systemic lupus erythematosus: still a challenge for physicians. J Intern Med 281(1):52–64. https://doi.org/10.1111/joim.12529

    Article  PubMed  CAS  Google Scholar 

  3. Costa-Reis P, Sullivan KE (2013) Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep 15(9):369. https://doi.org/10.1007/s11926-013-0369-4

    Article  PubMed  CAS  Google Scholar 

  4. Deng Y, Tsao BP (2014) Advances in lupus genetics and epigenetics. Curr Opin Rheumatol 26(5):482–492. https://doi.org/10.1097/BOR.0000000000000086

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mak A, Tay SH (2014) Environmental factors, toxicants and systemic lupus erythematosus. Int J Mol Sci 15(9):16043–16056. https://doi.org/10.3390/ijms150916043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tedeschi SK, Bermas B, Costenbader KH (2013) Sexual disparities in the incidence and course of SLE and RA. Clin Immunol 149(2):211–218. https://doi.org/10.1016/j.clim.2013.03.003

    Article  PubMed  CAS  Google Scholar 

  7. Rider V, Abdou NI, Kimler BF et al (2018) Gender bias in human systemic lupus erythematosus: a problem of steroid receptor action? Front Immunol 9:611. https://doi.org/10.3389/fimmu.2018.00611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lahita RG (1999) The role of sex hormones in systemic lupus erythematosus. Curr Opin Rheumatol 11(5):352–356. https://doi.org/10.1097/00002281-199909000-00005

    Article  PubMed  CAS  Google Scholar 

  9. Grimaldi CM (2006) Sex and systemic lupus erythematosus: the role of the sex hormones estrogen and prolactin on the regulation of autoreactive B cells. Curr Opin Rheumatol 18(5):456–461. https://doi.org/10.1097/01.bor.0000240354.37927.dd

    Article  PubMed  CAS  Google Scholar 

  10. Moulton VR (2018) Sex hormones in acquired immunity and autoimmune disease. Front Immunol 9:2279. https://doi.org/10.3389/fimmu.2018.02279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. McMurray RW (2001) Prolactin in murine systemic lupus erythematosus. Lupus 10(10):742–747. https://doi.org/10.1191/096120301717164985

    Article  PubMed  CAS  Google Scholar 

  12. Recalde G, Moreno-Sosa T, Yudica F et al (2018) Contribution of sex steroids and prolactin to the modulation of T and B cells during autoimmunity. Autoimmun Rev 17(5):504–512. https://doi.org/10.1016/j.autrev.2018.03.006

    Article  PubMed  CAS  Google Scholar 

  13. Saunders AE, Johnson P (2010) Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell signal 22(3):339–348. https://doi.org/10.1016/j.cellsig.2009.10.003

    Article  PubMed  CAS  Google Scholar 

  14. Courtney AH, Shvets AA, Lu W, et al (2019) CD45 functions as a signaling gatekeeper in T cells. Sci Signal 12(604). https://doi.org/10.1126/scisignal.aaw8151

  15. Zikherman J, Weiss A (2008) Alternative splicing of CD45: the tip of the iceberg. Immunity 2008:839–841. https://doi.org/10.1016/j.immuni.2008.12.005

    Article  CAS  Google Scholar 

  16. Merkenschlager M, Terry L, Edwards R et al (1988) Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol 18(11):1653–1661. https://doi.org/10.1002/eji.1830181102

    Article  PubMed  CAS  Google Scholar 

  17. Beverley PC, Daser A, Michie CA et al (1992) Functional subsets of T cells defined by isoforms of CD45. Biochem Soc Trans 20(1):184–187. https://doi.org/10.1042/bst0200184

    Article  PubMed  CAS  Google Scholar 

  18. Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107–137. https://doi.org/10.1146/annurev.immunol.21.120601.140946

    Article  PubMed  CAS  Google Scholar 

  19. Silva-Neta HL, Brelaz-de-Castro MCA, Chagas MBO et al (2018) CD4(+)CD45RA(-)FOXP3(low) Regulatory T cells as potential biomarkers of disease activity in systemic lupus erythematosus Brazilian patients. Biomed Res Int 2018:3419565. https://doi.org/10.1155/2018/3419565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rheinlander A, Schraven B, Bommhardt U (2018) CD45 in human physiology and clinical medicine. Immunol Lett 196:22–32. https://doi.org/10.1016/j.imlet.2018.01.009

    Article  PubMed  CAS  Google Scholar 

  21. Taneja V (2018) Sex hormones determine immune response. Front Immunol 9:1931. https://doi.org/10.3389/fimmu.2018.01931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang T, Dong Z, Cai H et al (2020) Estradiol regulates the expression of CD45 splicing isoforms in lymphocytes. Mol Biol Rep 47(4):3025–3030. https://doi.org/10.1007/s11033-020-05373-y

    Article  PubMed  CAS  Google Scholar 

  23. Shukla S, Kavak E, Gregory M et al (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479(7371):74–79. https://doi.org/10.1038/nature10442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Marina RJ, Sturgill D, Bailly MA et al (2016) TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing. The EMBO J 35(3):335–355. https://doi.org/10.15252/embj.201593235

    Article  PubMed  CAS  Google Scholar 

  25. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725. https://doi.org/10.1002/art.1780400928

    Article  PubMed  CAS  Google Scholar 

  26. Yel L (2010) Selective IgA deficiency. J Clin Immunol 30(1):10–16. https://doi.org/10.1007/s10875-009-9357-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Odineal DD, Gershwin ME (2020) The epidemiology and clinical manifestations of autoimmunity in selective IgA deficiency. Clin Rev Allergy Immunol 58:107–133. https://doi.org/10.1136/ard.39.1.50

    Article  PubMed  CAS  Google Scholar 

  28. Becker GJ, Waldburger M, Hughes GR et al (1980) Value of serum C-reactive protein measurement in the investigation of fever in systemic lupus erythematosus. Ann Rheum Dis 39(1):50–52. https://doi.org/10.1136/ard.39.1.50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hind CR, Ng SC, Feng PH et al (1985) Serum C-reactive protein measurement in the detection of intercurrent infection in Oriental patients with systemic lupus erythematosus. Ann Rheum Dis 44(4):260–261. https://doi.org/10.1136/ard.44.4.260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Feng M, Zhang SL, Liang ZJ et al (2019) Peripheral neutrophil CD64 index combined with complement, CRP, WBC count and B cells improves the ability of diagnosing bacterial infection in SLE. Lupus 28(3):304–316. https://doi.org/10.1177/0961203319827646

    Article  PubMed  CAS  Google Scholar 

  31. Ferreira RC, Pan-Hammarstrom Q, Graham RR et al (2010) Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet 42(9):777–780. https://doi.org/10.1038/ng.644

    Article  PubMed  CAS  Google Scholar 

  32. Erkocoglu M, Metin A, Kaya A et al (2017) Allergic and autoimmune disorders in families with selective IgA deficiency. Turk J Med Sci 47(2):592–598. https://doi.org/10.3906/sag-1605-50

    Article  PubMed  CAS  Google Scholar 

  33. Shkalim V, Monselize Y, Segal N et al (2010) Selective IgA deficiency in children in Israel. J Clin Immunol 30(5):761–765. https://doi.org/10.1007/s10875-010-9438-x

    Article  PubMed  CAS  Google Scholar 

  34. Zhang J, Kong W, Ni J et al (2020) The epidemiology and clinical feature of selective immunoglobulin a deficiency of Zhejiang Province in China. J Clin Lab Anal 34(10):e23440. https://doi.org/10.1002/jcla.23440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang W, Yao T, Zhang T et al (2020) Selective immunoglobulin A deficiency (SIgAD) primarily leads to recurrent infections and autoimmune diseases: a retrospective study of Chinese patients in the past 40 years. Genes Dis 7(1):115–121. https://doi.org/10.1016/j.gendis.2019.10.014

    Article  PubMed  CAS  Google Scholar 

  36. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16(10):626–638. https://doi.org/10.1038/nri.2016.90

    Article  CAS  Google Scholar 

  37. Takahashi T, Iwasaki A (2021) Sex differences in immune responses. Science 371(6527):347–348. https://doi.org/10.1126/science.abe7199

    Article  PubMed  CAS  Google Scholar 

  38. Song GG, Lee YH (2017) Circulating prolactin level in systemic lupus erythematosus and its correlation with disease activity: a meta-analysis. Lupus 26(12):1260–1268. https://doi.org/10.1177/0961203317693094

    Article  PubMed  CAS  Google Scholar 

  39. Jara LJ, Medina G, Saavedra MA et al (2017) Prolactin has a pathogenic role in systemic lupus erythematosus. Immunol Res 65(2):512–523. https://doi.org/10.1007/s12026-016-8891-x

    Article  PubMed  CAS  Google Scholar 

  40. Lahita RG, Kunkel HG et al (1983) Increased oxidation of testosterone in systemic lupus erythematosus. Arthritis Rheum 26(12):1517–1521. https://doi.org/10.1002/art.1780261215

    Article  PubMed  CAS  Google Scholar 

  41. Robeva R, Tanev D, Andonova S et al (2013) Androgen receptor (CAG)n polymorphism and androgen levels in women with systemic lupus erythematosus and healthy controls. Rheumatol Int 33(8):2031–2038. https://doi.org/10.1007/s00296-013-2687-2

    Article  PubMed  CAS  Google Scholar 

  42. Mohr A, Atif M, Balderas R et al (2019) The role of FOXP3(+) regulatory T cells in human autoimmune and inflammatory diseases. Clin Exp Immunol 197(1):24–35. https://doi.org/10.1111/cei.13288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Singh RP, Bischoff DS (2021) Sex hormones and gender influence the expression of markers of regulatory T cells in SLE patients. Front Immunol 12:619268. https://doi.org/10.3389/fimmu.2021.619268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chang VT, Fernandes RA, Ganzinger KA et al (2016) Initiation of T cell signaling by CD45 segregation at “close contacts.” Nat Immunol 17(5):574–582. https://doi.org/10.1038/ni.3392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Javierre BM, Fernandez AF, Richter J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20(2):170–179. https://doi.org/10.1101/gr.100289.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Imgenberg-Kreuz J, Carlsson Almlof J, Leonard D et al (2018) DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann Rheum Dis 77(5):736–743. https://doi.org/10.1136/annrheumdis-2017-212379

    Article  PubMed  CAS  Google Scholar 

  47. Su Z, Liu G, Zhang B, et al (2021) Natural antisense transcript PEBP1P3 regulates the RNA expression, DNA methylation and histone modification of CD45 gene. Genes 12(5). https://doi.org/10.3390/genes12050759

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (No. 31870745) and Natural Science Foundation of Guangdong Province, China (No. 2018A0303130153).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the conception of the work or the acquisition, analysis, or interpretation of data. All authors approved the submitted version of the manuscript.

Corresponding authors

Correspondence to Qiaoxin Zhang or Zhongjing Su.

Ethics declarations

Consent to participate

Informed consent was obtained from all subjects enrolled in the study.

Consent for publication

Informed consent was obtained from all subjects enrolled in the study.

Disclosures

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhaoxia Dong and Bin Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Zhang, B., Rong, J. et al. The aberrant expression of CD45 isoforms and levels of sex hormones in systemic lupus erythematosus. Clin Rheumatol 41, 1087–1093 (2022). https://doi.org/10.1007/s10067-021-05934-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-05934-x

Keywords

Navigation