Skip to main content

Advertisement

Log in

A hydraulic–hydrochemical approach to impact assessment of a grout curtain on karst aquifer behavior

Evaluation de l’impact d’une barrière étanche sur le comportement de l’aquifère karstique à partir d’une approche couplée hydrochimique et hydrodynamique

Un enfoque hidráulico-hidroquímico para la evaluación del impacto de una pantalla de inyección en elS comportamiento de un acuífero kárstico

一种用于评估灌浆帷幕对喀斯特含水层行为影响的水力学-水化学方法

Uma abordagem hidráulica-hidroquímica para a avaliação do impacto de uma cortina de concreto no comportamento do aquífero cárstico

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Combining the results obtained by hydraulic (hysteresis) and hydrochemical (multivariate statistical analysis) approaches gives a better understanding of karst aquifer behavior, functioning of the hydraulic barrier and hydrogeochemical processes. The hydraulic approach is based on the principle that the relation of the groundwater levels in piezometers and the water level in a surface-water reservoir often follow certain hysteretic patterns that reflect a system of internal structure. This allows an analysis of the structure of the karst system as well as properties or functionality of the hydraulic barrier associated with the dam. Adequate understanding of the hysteresis diagrams is crucial to successfully addressing the issue of karst aquifer behavior and water leakage direction; normalized hysteresis data provided easier comparison between the data series and the interconnections among observed patterns. The application of the hydrochemical approach further contributed to an understanding of the karst system as well as the impact of the hydraulic barrier. Two-way hierarchical cluster analysis enabled the isolation of areas with similar hydrochemical characteristics, which was supplemented with circulation directions assumed by hydraulic methods. Factor analysis helped in identifying major hydrogeochemical processes in the various hydraulic regimes. The combined findings of hydraulic and hydrochemical approaches were successfully applied to a complex karst aquifer system where the reservoir (Lazići) was created for a reversible hydropower plant, situated in the Tara mountains, in the Dinaric karst of western Serbia.

Résumé

La combinaison des résultats obtenus par des approches hydrodynamique (hystérésis) et hydrochimique (analyse statistique multivariée) permet de mieux comprendre le comportement des aquifères karstiques, le fonctionnement d’une barrière hydraulique et les processus hydrogéochimiques. L’approche hydrodynamique repose sur le principe que la relation entre les niveaux piézométriques et le niveau statique d’un réservoir d’eau de surface suivent la plupart du temps un schéma d’hystérésis qui reflète la structure interne d’un système. Cela permet d’analyser la structure du système karstique ainsi que les propriétés ou la fonctionnalité de la barrière hydraulique associée au barrage. Une bonne compréhension des diagrammes d’hystérésis est cruciale pour résoudre les problèmes de comportement de l’aquifère karstique et de la direction des fuites d’eau; les données d’hystérésis normalisées facilitent la comparaison entre les séries de données et les interconnexions entre les modèles observés. L’application de l’approche hydrochimique a en outre contribué à la compréhension du système karstique ainsi que de l’impact de la barrière hydraulique. L’analyse hiérarchisée bidirectionnelle par grappes permet d’isoler des zones présentant des caractéristiques hydrochimiques similaires, qui est complétée par les directions d’écoulement démontrées par les méthodes hydrodynamiques. L’analyse factorielle a aidé à identifier les principaux processus hydrogéochimiques pour différents régimes hydrauliques. Les résultats combinés des approches hydrodynamique et hydrochimique ont été appliqués avec succès à un système aquifère karstique complexe dont le réservoir (Lazići) a été créé pour une centrale hydroélectrique réversible, située dans les montagnes de Tara, dans le karst dinarique de l’ouest de la Serbie.

Resumen

La combinación de los resultados obtenidos mediante enfoques hidráulicos (histéresis) e hidroquímicos (análisis estadístico multivariado) permite comprender mejor el comportamiento del acuífero kárstico, el funcionamiento de la barrera hidráulica y los procesos hidrogeoquímicos. El enfoque hidráulico se basa en el principio de que la relación de los niveles de las aguas subterráneas en los piezómetros y el nivel del agua en un depósito de aguas superficiales suelen seguir ciertos patrones de histéresis que reflejan un sistema de estructura interna. Esto permite un análisis de la estructura del sistema kárstico, así como de las propiedades o la funcionalidad de la barrera hidráulica asociada a la presa. La comprensión adecuada de los diagramas de histéresis es crucial para abordar con éxito la cuestión del comportamiento del acuífero kárstico y la dirección de la fuga de agua; los datos de histéresis normalizados facilitan la comparación entre las series de datos y las interconexiones entre los patrones observados. La aplicación del enfoque hidroquímico contribuyó además a la comprensión del sistema kárstico, así como del impacto de la barrera hidráulica. El análisis de clusters jerarquizados en ambos sentidos permitió aislar zonas con características hidroquímicas similares, lo que se complementó con las direcciones de circulación asumidas por los métodos hidráulicos. El análisis factorial ayudó a identificar los principales procesos hidrogeoquímicos en los diversos regímenes hidráulicos. Las conclusiones combinadas de los métodos hidráulicos e hidroquímicos se aplicaron con éxito a un complejo sistema acuífero kárstico en el que se constituyó el embalse (Lazići) para una central hidroeléctrica en régimen reversible, situado en las montañas de Tara, en el karst de la región dinárica de Serbia occidental.

摘要

将水力学(滞后)和水化学(多变量统计分析)方法获得的结果结合起来,可以更好地理解岩溶含水层的行为,水力屏障的功能和水文地球化学过程。 水力学方法基于测压计中地下水位与地表水水位之间的关系通常遵循某些滞后模式的原理,而这些滞后模式能够反应含水层的内部结构系统。通过这些我们可以分析岩溶系统的结构,与大坝相关联的水力屏障的特性或功能。充分理解滞后图对成功解决岩溶含水层行为和渗水方向问题至关重要。 归一化滞后数据使数据系列与观测模式中相互联系之间的比较更加容易。水化学方法的应用有助于进一步理解岩溶系统以及水力屏障的影响。双向层次聚类分析可以分离出具有相似水化学特征的区域,并辅以水力方法假设的环流方向。因子分析有助于识别不同水力状态下主要水文地球化学过程。水力和水化学方法的综合发现成功地应用于某复杂喀斯特含水层系统,该含水层(Lazići)是为位于塞尔维亚西部的Dinaric喀斯特中Tara山脉的一个可逆式水电站而建立的。

Resumo

A combinação dos resultados obtidos pelas abordagens hidráulica (histerese) e hidroquímica (análise estatística multivariada) permitiu uma melhor compreensão do comportamento do aquífero cárstico, funcionamento da barreira hidráulica e processos hidrogeoquímicos. A abordagem hidráulica é baseada no princípio de que a relação entre os níveis da água subterrânea em piezômetros e o nível de água em um reservatório de água superficial, frequentemente seguem certos padrões histeréticos que refletem o sistema de estrutura interna. Isso permite uma análise da estrutura do sistema cárstico, bem como propriedades ou funcionalidade da barreira hidráulica associada à barragem. A compreensão adequada dos diagramas de histerese é crucial para abordar com sucesso a questão do comportamento do aquífero cárstico e a direção do vazamento de água; dados de histerese normalizados forneceram comparação mais fácil entre a série de dados e as interconexões entre os padrões observados. A aplicação da abordagem hidroquímica contribuiu ainda mais para a compreensão do sistema cárstico, bem como do impacto da barreira hidráulica. A análise de agrupamento hierárquico bidirecional permitiu o isolamento de áreas com características hidroquímicas semelhantes, o que foi complementado com direções de circulação assumidas por métodos hidráulicos. A análise fatorial ajudou a identificar os principais processos hidrogeoquímicos nos vários regimes hidráulicos. A combinação de diferentes abordagens hidráulicas e hidroquímicas foram aplicadas com sucesso a um sistema aquífero cárstico complexo, onde o reservatório (Lazići) foi criado para uma usina hidrelétrica reversível, situada nas montanhas Tara, no carste Dinárico a oeste da Sérvia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andriani GF, Parise M (2015) On the applicability of geomechanical models for carbonate rock masses interested by karst processes. Environ Earth Sci 74(12):7813–7821

    Article  Google Scholar 

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148. 160

    Article  Google Scholar 

  • Bakalowicz M, Mangin A (1980) L’aquifère karstique: sa déf-inition, ses caractéristiques et son identification [The karst aquifer: its definition, characteristics and identification]. Mém L Ser Soc Géol France 11:71–79

    Google Scholar 

  • Batiot C, Emblanch C, Blavoux B (2003) Total organic carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic system. C R Geosci 335:205–214

    Article  Google Scholar 

  • Bertrand C, Guglielmi Y, Denimal S, Mudry J (2015) Hydrochemical response of a fractured carbonate aquifer to stress variations: application to leakage detection of the Vouglans Arch Dam Lake (Jura, France). Environ Earth Sci 74:7671–7683. https://doi.org/10.1007/s12665-015-4671-5

    Article  Google Scholar 

  • Cerny CA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivar Behav Res 12(1):43–47

    Article  Google Scholar 

  • Cloutier V (2004) Origin and geochemical evolution of groundwater in the Paleozoic basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Quebec, Canada (in French and English). PhD Thesis, INRS-eau, Terre & Environnement, Quebec, Canada

  • Denimal S, Bertrand C, Steinmann M, Carry N (2017) Comparison of flow processes in drains and low permeability volumes of a karst system in the French Jura Mountains. In: Advances in karst science. EuroKarst 2016, Neuchâtel, Switzerland, September 2016, pp 303–317. doi https://doi.org/10.1007/978-3-319-45465-8_29

  • Evans C, Davies TD (1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resour Res 34:129–137

    Article  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK

    Book  Google Scholar 

  • Fovet O, Ruiy L, Hrachowitz M, Faucheux M, Gascuel-Ondoux C (2015) Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models. Hydrol Earth Syst Sci 19:105–123. https://doi.org/10.5194/hess-19-105-2015

    Article  Google Scholar 

  • Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor and Francis, Leiden, The Netherlands, 264 pp

  • Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474. https://doi.org/10.1007/s10040-002-0196-6

    Article  Google Scholar 

  • Gunn J (1983) Point recharge of limestone aquifers: a model from New Zealand karst. J Hydrol 61:19–29

    Article  Google Scholar 

  • Gutiérrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth-Sci Rev 138:61–88

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242

    Article  Google Scholar 

  • Holland SM (2006) Cluster analysis. Department of Geology, University of Georgia, Athens, GA, 45 pp

  • Houlsby A (1976) Routine interpretation of the Lugeon water-test. Q J Eng Geol 9:303–313

    Article  Google Scholar 

  • Jemcov I (2019) Impact assessment of grout curtain on the hydraulic behavior in karst, based on time a series analysis. Environ Earth Sci 78:415. https://doi.org/10.1007/s12665-019-8412-z

    Article  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Kogovšek J, Petrič M (2014) Solute transport processes in a karst vadose zone characterized by long-term tracer tests [The cave system of Postojnska Jama, Slovenia]. J Hydrol 519A:1205–1213. https://doi.org/10.1016/j.jhydrol.2014.08.047

    Article  Google Scholar 

  • Lawler DM, Petts GE, Foster ID, Harper S (2006) Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. Sci Total Environ 360:109–126. https://doi.org/10.1016/j.scitotenv.2005.08.032

    Article  Google Scholar 

  • Le Dellilou P (2003) Les Barrages: conception et maintenance [The dams: design and maintenance]. Presses Universitaires de Lyon, Lyon, France, 270 pp

  • Lee JY, Kim HS, Yun ST, Kwon JS (2009) Factor and cluster analyses of water chemistry in and around a large rockfill dam: implications for water leakage. J Geotech Geoenviron. https://doi.org/10.1061/_ASCE_GT.1943-5606.0000039

  • Lloyd CEM, Freer JE, Johnes PJ, Collins AL (2016a) Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis. Hydrol Earth Syst Sci 20:625–632. https://doi.org/10.5194/hess-20-625-2016

    Article  Google Scholar 

  • Lloyd CEM, Freer JE, Johnes PJ, Collins AL (2016b) Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Sci Total Environ 543(part A):388–404. https://doi.org/10.1016/j.scitotenv.2015.11.028

    Article  Google Scholar 

  • Massart DL, Kaufman L (1983) The interpretation of analytical chemical data by the use of cluster analysis. Wiley, New York

    Google Scholar 

  • Medici G, West LJ, Banwart SA (2019) Groundwater flow velocities in a fractured carbonate aquifer-type: implications for contaminant transport. J Contam Hydrol 222:1–16

    Article  Google Scholar 

  • Milanović PT (1981) Karst hydrogeology. Water Resources, Littleton, CO

  • Milanović PT (2000) Geological engineering in karst. Monograph. Zebra, Belgrade, 374 pp

  • Milanović PT (2002) The environmental impacts of human activities and engineering constructions in karst regions. Episodes 25(1):13–21. https://doi.org/10.18814/epiiugs/2002/v25i1/002

    Article  Google Scholar 

  • Milanović S, Vasić L (2016) 3D conduit modelling of leakage below a dam situated in highly karstified rocks. In: Stevanović Z, Krešić N, Kukurić N (eds) Karst without boundaries. International Association of Hydrogeologists Selected Papers. CRC, Boca Raton, FL, pp 321–336

    Chapter  Google Scholar 

  • Mohammadi Z, Raeisi E, Bakalowicz M (2007) Method of leakage study at the karst dam site: a case study—Khersan 3 dam, Iran. Environ Geol 52(6):1053–1065. https://doi.org/10.1007/s00254-006-0545-1

    Article  Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books, Dayton, OH, 454 pp

    Google Scholar 

  • Parise M, De Waele J, Gutiérrez D (2009) Current perspectives on the environmental impacts and hazards in karst. Environ Geol 58:235–237. https://doi.org/10.1007/s00254-008-1608-2

    Article  Google Scholar 

  • Parise M, Closson D, Gutiérrez F, Stevanovic Z (2015) Anticipating and managing engineering problems in the complex karst environment. Environ Earth Sci 74:7823–7835

    Article  Google Scholar 

  • Petrič M, Kogovšek J, Ravbar N (2018) Effects of the vadose zone on groundwater flow and solute transport characteristics in mountainous karst aquifers: the case of the Javorniki-Snežnik Massif (SW Slovenia). Acta Carsol 47(1):35–51. https://doi.org/10.3986/ac.v47i1.5144

    Article  Google Scholar 

  • Roje-Bonacci T, Bonacci O (2013) The possible negative consequences of underground dam and reservoir construction and operation in costal karst areas: an example of the hydro-electric power plant (HEPP) Ombla near Dubrovnik (Croatia). Nat Hazards Earth Syst Sci 13:2041–2052. https://doi.org/10.5194/nhess-13-2041-2013

    Article  Google Scholar 

  • Stevanović Z (2015) (Ed) Karst aquifers: characterization and engineering. Series: Professional Practice in Earth Science. Springer, Cham, Switzerland

  • Todorović M, Ćuk M, Štrbački J, Papić P (2020) Rare earth elements in mineral waters in Serbia. Environ Earth Sci 79:290. https://doi.org/10.1007/s12665-020-09029-9

    Article  Google Scholar 

  • Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61:45–67. https://doi.org/10.1016/0022-1694(83)90234-2

    Article  Google Scholar 

  • Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10. https://doi.org/10.5038/1827-806X.37.1.1

    Article  Google Scholar 

  • Worthington S (2003) A comprehensive strategy for understanding flow in carbonate aquifers. In: Speleogenesis and evolution of karst aquifers, vol 1, no. 1. National Speleological Society, Huntsville, AL

Download references

Acknowledgements

The authors thank the management and employees of HPP Bajina Bašta for their assistance with the technical realization of field research. This work is also supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors also thank the reviewers Mario Parise and Wei Qiao, for their careful reading and thoughtful comments towards improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Ćuk Đurović.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the special issue “Five decades of advances in karst hydrogeology”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jemcov, I., Ćuk Đurović, M. A hydraulic–hydrochemical approach to impact assessment of a grout curtain on karst aquifer behavior. Hydrogeol J 29, 179–197 (2021). https://doi.org/10.1007/s10040-020-02245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02245-4

Keywords

Navigation