Skip to main content

Advertisement

Log in

Ribosomal proteins induce stem cell-like characteristics in glioma cells as an “extra-ribosomal function”

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

The characteristic features of plasticity and heterogeneity in glioblastoma (GB) cells cause therapeutic difficulties. GB cells are exposed to various stimuli from the tumor microenvironment and acquire the potential to resist chemoradiotherapy. To investigate how GB cells acquire stem cell-like phenotypes, we focused on ribosomal proteins, because ribosome incorporation has been reported to induce stem cell-like phenotypes in somatic cells. Furthermore, dysregulation of ribosome biogenesis has been reported in several types of cancer. We focused on ribosomal protein S6, which promotes sphere-forming ability and stem cell marker expression in GB cells. We expect that investigation of dysregulation of ribosome biogenesis and extra-ribosomal function in GB will provide new insights about the plasticity, heterogeneity, and therapeutic resistance of GB cells, which can potentially lead to revolutionary therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  3. Singh SK, Clarke ID, Hide T et al (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273

    Article  CAS  PubMed  Google Scholar 

  4. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  5. Andersen BM, Faust Akl C, Wheeler MA et al (2021) Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat Rev Cancer 21:786–802

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez A, Domenech M, Munoz-Marmol AM et al (2021) Glioblastoma: relationship between metabolism and immunosuppressive microenvironment. Cells 10(12):3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neftel C, Laffy J, Filbin MG et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(835–849):e821

    Google Scholar 

  8. Yang K, Wu Z, Zhang H et al (2022) Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 21:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hide T, Komohara Y, Miyasato Y et al (2018) Oligodendrocyte progenitor cells and macrophages/microglia produce glioma stem cell niches at the tumor border. EBioMedicine 30:94–104

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hide T, Shibahara I, Kumabe T (2019) Novel concept of the border niche: glioblastoma cells use oligodendrocytes progenitor cells (GAOs) and microglia to acquire stem cell-like features. Brain Tumor Pathol 36:63–73

    Article  PubMed  Google Scholar 

  11. Ito N, Katoh K, Kushige H et al (2018) Ribosome incorporation into somatic cells promotes lineage transdifferentiation towards multipotency. Sci Rep 8:1634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Shirakawa Y, Hide T, Yamaoka M et al (2020) Ribosomal protein S6 promotes stem-like characters in glioma cells. Cancer Sci 111:2041–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Domenech M, Hernandez A, Plaja A et al (2021) Hypoxia: the cornerstone of glioblastoma. Int J Mol Sci 22(22):12608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vartanian A, Singh SK, Agnihotri S et al (2014) GBM’s multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro Oncol 16:1167–1175

    Article  PubMed  PubMed Central  Google Scholar 

  15. Basheer AS, Abas F, Othman I et al (2021) Role of inflammatory mediators, macrophages, and neutrophils in glioma maintenance and progression: mechanistic understanding and potential therapeutic applications. Cancers (Basel) 13(16):4226

    Article  CAS  Google Scholar 

  16. Simon T, Jackson E, Giamas G (2020) Breaking through the glioblastoma micro-environment via extracellular vesicles. Oncogene 39:4477–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohiuddin E, Wakimoto H (2021) Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches. Am J Cancer Res 11:3742–3754

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Broekman ML, Maas SLN, Abels ER et al (2018) Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 14:482–495

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kressler D, Hurt E, Bassler J (2010) Driving ribosome assembly. Biochim Biophys Acta 1803:673–683

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X, Liao WJ, Liao JM et al (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang D, Chen HP, Duan HF et al (2016) Aggregation of ribosomal protein S6 at nucleolus is cell cycle-controlled and its function in Pre-rRNA processing is phosphorylation dependent. J Cell Biochem 117:1649–1657

    Article  CAS  PubMed  Google Scholar 

  22. Biever A, Valjent E, Puighermanal E (2015) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci 8:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chow S, Minden MD, Hedley DW (2006) Constitutive phosphorylation of the S6 ribosomal protein via mTOR and ERK signaling in the peripheral blasts of acute leukemia patients. Exp Hematol 34:1183–1191

    Article  CAS  PubMed  Google Scholar 

  24. Chen B, Tan Z, Gao J et al (2015) Hyperphosphorylation of ribosomal protein S6 predicts unfavorable clinical survival in non-small cell lung cancer. J Exp Clin Cancer Res 34:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Khalaileh A, Dreazen A, Khatib A et al (2013) Phosphorylation of ribosomal protein S6 attenuates DNA damage and tumor suppression during development of pancreatic cancer. Cancer Res 73:1811–1820

    Article  CAS  PubMed  Google Scholar 

  26. Puchalski RB, Shah N, Miller J et al (2018) An anatomic transcriptional atlas of human glioblastoma. Science 360:660–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shirakawa Y, Ohta K, Miyake S et al (2021) Glioma cells acquire stem-like characters by extrinsic ribosome stimuli. Cells 10(11):2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Court FA, Hendriks WT, MacGillavry HD et al (2008) Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci 28:11024–11029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopez-Leal R, Alvarez J, Court FA (2016) Origin of axonal proteins: Is the axon-schwann cell unit a functional syncytium? Cytoskeleton (Hoboken) 73:629–639

    Article  CAS  Google Scholar 

  30. Pinto G, Saenz-de-Santa-Maria I, Chastagner P et al (2021) Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem J 478:21–39

    Article  CAS  PubMed  Google Scholar 

  31. Yi YW, You KS, Park JS et al (2021) Ribosomal protein S6: a potential therapeutic target against cancer? Int J Mol Sci 23(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pecoraro A, Pagano M, Russo G et al (2021) Ribosome biogenesis and cancer: overview on ribosomal proteins. Int J Mol Sci 22(11):5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Orgebin E, Lamoureux F, Isidor B et al (2020) Ribosomopathies: new therapeutic perspectives. Cells 9(9):2080

    Article  CAS  PubMed Central  Google Scholar 

  34. Norris K, Hopes T, Aspden JL (2021) Ribosome heterogeneity and specialization in development. Wiley Interdiscip Rev RNA 12:e1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Warner JR, McIntosh KB (2009) How common are extraribosomal functions of ribosomal proteins? Mol Cell 34:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Narla A, Ebert BL (2010) Ribosomopathies: human disorders of ribosome dysfunction. Blood 115:3196–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barna M, Pusic A, Zollo O et al (2008) Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456:971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bursac S, Prodan Y, Pullen N et al (2021) Dysregulated ribosome biogenesis reveals therapeutic liabilities in cancer. Trends Cancer 7:57–76

    Article  CAS  PubMed  Google Scholar 

  39. El Khoury W, Nasr Z (2021) Deregulation of ribosomal proteins in human cancers. Biosci Rep. https://doi.org/10.1042/BSR20211577

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jeon YJ, Kim IK, Hong SH et al (2008) Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling. Oncogene 27:4344–4352

    Article  CAS  PubMed  Google Scholar 

  41. Yanai A, Inoue N, Yagi T et al (2015) Activation of mTOR/S6K but not MAPK pathways might be associated with high Ki-67, ER(+), and HER2(-) breast cancer. Clin Breast Cancer 15:197–203

    Article  CAS  PubMed  Google Scholar 

  42. Grundy M, Jones T, Elmi L et al (2018) Early changes in rpS6 phosphorylation and BH3 profiling predict response to chemotherapy in AML cells. PLoS ONE 13:e0196805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hagner PR, Mazan-Mamczarz K, Dai B et al (2011) Ribosomal protein S6 is highly expressed in non-Hodgkin lymphoma and associates with mRNA containing a 5’ terminal oligopyrimidine tract. Oncogene 30:1531–1541

    Article  CAS  PubMed  Google Scholar 

  44. Liu Z, Yun R, Yu X et al (2016) Overexpression of Notch3 and pS6 is associated with poor prognosis in human ovarian epithelial cancer. Mediators Inflamm 2016:5953498

    PubMed  PubMed Central  Google Scholar 

  45. Pinto AP, Degen M, Barron P et al (2013) Phosphorylated S6 as an immunohistochemical biomarker of vulvar intraepithelial neoplasia. Mod Pathol 26:1498–1507

    Article  CAS  PubMed  Google Scholar 

  46. Molinolo AA, Hewitt SM, Amornphimoltham P et al (2007) Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clin Cancer Res 13:4964–4973

    Article  CAS  PubMed  Google Scholar 

  47. Zheng Z, Zheng Y, Zhang M et al (2016) Reciprocal expression of p-AMPKa and p-S6 is strongly associated with the prognosis of gastric cancer. Tumour Biol 37:4803–4811

    Article  CAS  PubMed  Google Scholar 

  48. Knoll M, Macher-Goeppinger S, Kopitz J et al (2016) The ribosomal protein S6 in renal cell carcinoma: functional relevance and potential as biomarker. Oncotarget 7:418–432

    Article  PubMed  Google Scholar 

  49. Corcoran RB, Rothenberg SM, Hata AN et al (2013) TORC1 suppression predicts responsiveness to RAF and MEK inhibition in BRAF-mutant melanoma. Sci Transl Med 5:196ra198

    Article  CAS  Google Scholar 

  50. Li YJ, Wang Y, Wang YY (2019) MicroRNA-99b suppresses human cervical cancer cell activity by inhibiting the PI3K/AKT/mTOR signaling pathway. J Cell Physiol 234:9577–9591

    Article  CAS  PubMed  Google Scholar 

  51. Ganger DR, Hamilton PD, Fletcher JW et al (1997) Metallopanstimulin is overexpressed in a patient with colonic carcinoma. Anticancer Res 17:1993–1999

    CAS  PubMed  Google Scholar 

  52. Fernandez-Pol JA, Fletcher JW, Hamilton PD et al (1997) Expression of metallopanstimulin and oncogenesis in human prostatic carcinoma. Anticancer Res 17:1519–1530

    CAS  PubMed  Google Scholar 

  53. Atsuta Y, Aoki N, Sato K et al (2002) Identification of metallopanstimulin-1 as a member of a tumor associated antigen in patients with breast cancer. Cancer Lett 182:101–107

    Article  CAS  PubMed  Google Scholar 

  54. Wang YW, Qu Y, Li JF et al (2006) In vitro and in vivo evidence of metallopanstimulin-1 in gastric cancer progression and tumorigenicity. Clin Cancer Res 12:4965–4973

    Article  CAS  PubMed  Google Scholar 

  55. Fernandez-Pol JA (2012) Increased serum level of RPMPS-1/S27 protein in patients with various types of cancer is useful for the early detection, prevention and therapy. Cancer Genomics Proteomics 9:203–256

    CAS  PubMed  Google Scholar 

  56. Xiong X, Zhao Y, He H et al (2011) Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene 30:1798–1811

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Ma J, Zhang L et al (2021) Overexpressed MPS-1 contributes to endometrioma development through the NF-kappaB signaling pathway. Reprod Biol Endocrinol 19:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Feldheim J, Kessler AF, Schmitt D et al (2020) Ribosomal protein S27/Metallopanstimulin-1 (RPS27) in Glioma-a new disease biomarker? Cancers (Basel) 12(5):1085

    Article  CAS  Google Scholar 

  59. Anam MB, Istiaq A, Kariya R et al (2021) Ribosome induces transdifferentiation of A549 and H-111-TC cancer cell lines. Biochem Biophys Rep 26:100946

    PubMed  PubMed Central  Google Scholar 

  60. Kudo M, Anam MB, Istiaq A et al (2021) Ribosome incorporation induces EMT-like phenomenon with cell cycle arrest in human breast cancer cell. Cells Tissues Organs. https://doi.org/10.1159/000513908:1-10

    Article  PubMed  Google Scholar 

  61. Setayesh-Mehr Z, Poorsargol M (2021) Toxic proteins application in cancer therapy. Mol Biol Rep 48:3827–3840

    Article  CAS  PubMed  Google Scholar 

  62. Rotondo R, Ragucci S, Castaldo S et al (2021) Cytotoxicity effect of quinoin, type 1 ribosome-inactivating protein from quinoa seeds, on glioblastoma cells. Toxins (Basel) 13(10):684

    Article  CAS  Google Scholar 

  63. Lapik YR, Fernandes CJ, Lau LF et al (2004) Physical and functional interaction between Pes1 and Bop1 in mammalian ribosome biogenesis. Mol Cell 15:17–29

    Article  CAS  PubMed  Google Scholar 

  64. Holzel M, Rohrmoser M, Schlee M et al (2005) Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. J Cell Biol 170:367–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Li YZ, Zhang C, Pei JP et al (2022) The functional role of Pescadillo ribosomal biogenesis factor 1 in cancer. J Cancer 13:268–277

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mi L, Qi Q, Ran H et al (2021) Suppression of ribosome biogenesis by targeting WD repeat domain 12 (WDR12) inhibits glioma stem-like cell growth. Front Oncol 11:751792

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li JL, Chen C, Chen W et al (2020) Integrative genomic analyses identify WDR12 as a novel oncogene involved in glioblastoma. J Cell Physiol 235:7344–7355

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (C) Grant Number JP20K09374 (to Takuichiro Hide) from Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuichiro Hide.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hide, T., Shibahara, I., Inukai, M. et al. Ribosomal proteins induce stem cell-like characteristics in glioma cells as an “extra-ribosomal function”. Brain Tumor Pathol 39, 51–56 (2022). https://doi.org/10.1007/s10014-022-00434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-022-00434-5

Keywords

Navigation