Skip to main content
Log in

Approximate and Mean Approximate Controllability Properties for Hilfer Time-Fractional Differential Equations

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the approximate and mean approximate controllability properties of fractional partial differential equations associated with the so-called Hilfer type time-fractional derivative and a non-negative selfadjoint operator AB with compact resolvent on L2(Ω), where \({\Omega }\subset \mathbb {R}^{N}\) (N ≥ 1) is a bounded open set. More precisely, we show that if 0 ≤ ν ≤ 1 and 0 < μ ≤ 1, then the system

$$ \mathbb{D}_{t}^{\mu,\nu} u+A_{B}u=f\chi_{\omega}\quad\text{ in }~{\Omega}\times (0,T),\qquad (\mathbb{I}_{t}^{(1-\nu)(1-\mu)}u)(\cdot,0)=u_{0}\quad \text{ in }~{\Omega}, $$

is approximately controllable in any time T > 0, u0L2(Ω) and any nonempty open set ω ⊂Ω and χω is the characteristic function of ω. In addition, if the operator AB has the unique continuation property, then the system is also mean (memory) approximately controllable. The operator AB can be the realization in L2(Ω) of a symmetric, non-negative uniformly elliptic second order operator with Dirichlet or Robin boundary conditions, or the realization in L2(Ω) of the fractional Laplace operator (−Δ)s (0 < s < 1) with the Dirichlet exterior condition, u = 0 in \(\mathbb {R}^{N}\setminus {\Omega }\), or the nonlocal Robin exterior condition, \(\mathcal {N}^{s}u+\beta u=0\) in \(\mathbb {R}^{N}\setminus \overline {\Omega }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40, 6287–6303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alabau-Boussouira, F., Brockett, R., Glass, O., Le Rousseau, J., Zuazua, E.: Control of Partial Differential Equations. Lecture Notes in Mathematics, vol. 2048. Springer, Berlin (2012)

    Google Scholar 

  3. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antil, H., Biccari, U., Ponce, R., Warma, M., Zamorano, S.: Controllability properties from the exterior under positivity constraints for a 1-d fractional heat equation. arXiv:1910.14529 (2019)

  5. Arendt, W., Warma, M.: The Laplacian with Robin boundary conditions on arbitrary domains. Potential Anal. 19, 341–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arendt, W., Warma, M.: Dirichlet and Neumann boundary conditions: what is in between? In: Arendt, W., Brézis, H., Pierre, M. (eds.) Nonlinear Evolution Equations and Related Topics, pp 119–135. Birkhäser, Basel (2004)

  7. Bazhlekova, E.: Fractional evolution equations in Banach spaces. Ph.D. Thesis, Eindhoven University of Technology (2001)

  8. Bellman, R.: An introduction to the theory of dynamic programming. Technical report, Rand Corp, Santa Monica (1953)

  9. Biccari, U.: Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator. arXiv:1411.7800 (2018)

  10. Biccari, U., Hernández-Santamaría, V.: Controllability of a one-dimensional fractional heat equation: theoretical and numerical aspects. IMA J. Math. Control Inf. 36, 1199–1235 (2019)

    Article  MathSciNet  Google Scholar 

  11. Biccari, U., Warma, M., Zuazua, E.: Controllability of the one-dimensional fractional heat equation under positivity constraints. Commun. Pure Appl. Anal. 19, 1949–1978 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaves-Silva, F.W., Zhang, X., Zuazua, E.: Controllability of evolution equations with memory. SIAM J. Control Optim. 55, 2437–2459 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Claus, B., Warma, M.: Realization of the fractional Laplacian with nonlocal exterior conditions via forms method. J. Evol. Equ. https://doi.org/10.1007/s00028-020-00567-0(2020)

  14. Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Am. Math. Soc. 352, 4207–4236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dipierro, S., Ros-Oton, X., Valdinoci, E.: Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33, 377–416 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dubkov, A.A., Spagnolo, B., Uchaikin, V.V.: Lévy flight superdiffusion: an introduction. Int. J. Bifurc. Chaos Appl. Sci. Eng. 18, 2649–2672 (2008)

    Article  MATH  Google Scholar 

  18. Fall, M.M., Felli, V.: Unique continuation property and local asymptotics of solutions to fractional elliptic equations. Commun. Partial Differ. Equ. 39, 354–397 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fattorini, H.O., Russell, D.L.: Exact controllability theorems for linear parabolic equations in one space dimension. Arc. Rational. Mech. Anal. 43, 272–292 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fiscella, A., Servadei, R., Valdinoci, E.: Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40, 235–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fujishiro, K., Yamamoto, M.: Approximate controllability for fractional diffusion equations by interior control. Appl. Anal. 93, 1793–1810 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gal, C.G., Warma, M.: Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces. Commun. Partial Differ. Equ. 42, 579–625 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gal, C.G., Warma, M.: Fractional-in-Time Semilinear Parabolic Equations and Applications. Mathématiques and Applications, vol. 84. Springer International Publishing, Berlin (2020)

    MATH  Google Scholar 

  24. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. CISM International Centre for Mechanical Sciences, vol. 378, pp 223–276. Springer, Vienna (1997)

  25. Gorenflo, R., Mainardi, F., Vivoli, A.: Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fractals 34, 87–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)

    Google Scholar 

  27. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 298628 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)

    Article  Google Scholar 

  29. Kalman, R.E.: On the general theory of control systems. IRE Trans. Autom. Control 4, 110–110 (1959)

    Article  Google Scholar 

  30. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. Ser. D 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  31. Keyantuo, V., Warma, M.: On the interior approximate controllability for fractional wave equations. Discrete Contin. Dyn. Syst.-A 36, 3719–3739 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Liu, Z., Li, X.: Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives. SIAM J. Control Optim. 53, 1920–1933 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Louis-Rose, C., Warma, M.: Approximate controllability from the exterior of space-time fractional wave equations. Appl. Math. Optim. https://doi.org/10.1007/s00245-018-9530-9 (2018)

  34. Lü, Q., Zuazua, E.: On the lack of controllability of fractional in time ODE and PDE. Math. Control Signals Syst. 28, 10 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lü, Q., Zhang, X., Zuazua, E.: Null controllability for wave equations with memory. J. Math. Pures Appl. (9) 108, 500–531 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. CISM International Centre for Mechanical Sciences, vol. 378, pp 291–348. Springer, Vienna (1997)

  37. Mainardi, F., Gorenflo, R.: On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, 283–299 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marica, A., Zuazua, E.: Symmetric Discontinuous Galerkin Methods for 1-D Waves. SpringerBriefs in Mathematics. Springer, New York (2014)

    Book  MATH  Google Scholar 

  40. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication. Wiley, New York (1993)

    Google Scholar 

  41. Podlubny, I.: Fractional Differential Equations Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    Google Scholar 

  42. Pontryagin, L.S.: The Mathematical Theory of Optimal Processes. International Series of Monographs in Pure and Applied Mathematics. Pergamon Press (1964)

  43. Ros-Oton, X., Serra, J.: The Pohozaev identity for the fractional Laplacian. Arch. Rational. Mech. Anal. 213, 587–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Russell, D.L.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20, 639–739 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schneider, W.R.: Grey noise. In: Albeverio, S., Casati, G., Cattaneo, U., Merlini, D., Moresi, R. (eds.) Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), pp 676–681. World Science Publication, Teaneck (1990)

  46. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst.-A 33, 2105–2137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. Sect. A 144, 831–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tomovski, Z., Hilfer, R., Srivastava, H.M.: Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions. Integral Trans. Spec. Funct. 21, 797–814 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Warma, M.: The Laplacian with general Robin boundary conditions. PhD Dissertation, University of Ulm (2002)

  50. Warma, M.: The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal. 42, 499–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Warma, M.: The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian. NoDEA Nonlinear Differ. Equ. Appl. 23, 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Warma, M.: On the approximate controllability from the boundary for fractional wave equations. Appl. Anal. 96, 2291–2315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Warma, M.: Approximate controllability from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57, 2037–2063 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Warma, M., Zamorano, S.: Null controllability from the exterior of a one-dimensional nonlocal heat equation. Control Cybern. 48(3), 417–436 (2019)

    MATH  Google Scholar 

  55. Zuazua, E.: Controllability of Partial Differential Equations. 3ème cycle. Castro Urdiales, Espagne (2006)

    Google Scholar 

Download references

Acknowledgements

The work of the authors is partially supported by the Air Force Office of Scientific Research under Award NO: FA9550-18-1-0242 and the Army Research Office (ARO) under Award NO: W911NF-20-1-0115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahamadi Warma.

Additional information

Dedicated to Professor Enrique Zuazua on the occasion of his 60th birthday.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragones, E., Keyantuo, V. & Warma, M. Approximate and Mean Approximate Controllability Properties for Hilfer Time-Fractional Differential Equations. Vietnam J. Math. 49, 739–765 (2021). https://doi.org/10.1007/s10013-020-00453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-020-00453-9

Keywords

Mathematics Subject Classification (2010)

Navigation