Skip to main content
Log in

Facial design and synthesis of CoAl-LDH-doped MXene with nanosheet structure for high-performance asymmetric supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Optimizing the performance of layered double hydroxide (LDH) electrodes by MXene is of significant importance for high-performance asymmetric supercapacitors. In this paper, CoAl-LDH nanosheet-doped s-MXene composites were prepared by a facile hydrothermal method, and two-dimensional layered microstructured CoAl-LDH/s-MXene electrode materials with excellent performance were prepared. The homogeneous growth of CoAl-LDH on s-MXene successfully hinders the agglomeration of CoAl-LDH and provides more layered channels for electron and ion transfer across the electrode material. In addition, CoAl-LDH can effectively suppress the stacking of s-MXene, which increases the electrochemical active site of the material, resulting in an increase in specific capacity. The CoAl-LDH/s-MXene electrode material has a high specific capacity of 1259.9 C g−1 at 1 A g−1, which has outstanding specific capacity and rate capability. The assembled asymmetric CoAl-LDH/s-MXene//AC supercapacitor achieves the desired energy density of 104 and 88 Wh kg−1 at 1500 and 6000 W kg−1. After 5000 laps at 10 A g−1, CoAl-LDH/s-MXene//AC has a capacitance retention rate of 86.6% and a coulomb efficiency of nearly 100%, demonstrating its splendid cycling stability. Therefore, this paper adopts a simple hydrothermal method to prepare CoAl-LDH/s-MXene active material, which provides an effective strategy for constructing supercapacitors with excellent performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nat 488:294–303

    Article  CAS  Google Scholar 

  2. Li S, Cheng P, Luo J, Zhou D, Xu W, Li J, Li R, Yuan D (2017) High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano-Micro Lett 9:1–10

    Article  Google Scholar 

  3. Li Z, Shao M, Zhou L, Zhang R, Zhang C, Han J, Wei M, Evans DG, Duan X (2016) A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 20:294–304

    Article  CAS  Google Scholar 

  4. Pant B, Ojha GP, Acharya J, Pant HR, Park M (2022) Lokta paper-derived free-standing carbon as a binder-free electrode material for high-performance supercapacitors. Sustainable Mater Technol 33:e00450

    Article  CAS  Google Scholar 

  5. Xu Y, Pan B, Li WS, Dong L, Wang X, Zhao FG (2021) High-performance flexible asymmetric supercapacitor paired with indanthrone@graphene heterojunctions and MXene electrodes. ACS Appl Mater Interfaces 13:41537–41544

    Article  CAS  PubMed  Google Scholar 

  6. Xu B, Zhang H, Mei H, Sun D (2020) Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord Chem Rev 420:213438

    Article  CAS  Google Scholar 

  7. Zhang C, Cai X, Qian Y, Jiang H, Zhou L, Li B, Lai L, Shen Z, Huang W (2018) Electrochemically synthesis of nickel cobalt sulfide for high-performance flexible asymmetric supercapacitors. Adv Sci 5:1700375

    Article  Google Scholar 

  8. Liu Q, Hong X, Zhang X, Wang W, Guo W, Liu X, Ye M (2019) Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chem Eng J 356:985–993

    Article  CAS  Google Scholar 

  9. Gao X, Zhang R, Huang X, Shi Y, Wang C, Gao Y, Han Z (2021) One-step growth of NiCoAl layered double hydroxides microspheres toward high energy density supercapacitors. J Alloys Compd 859:157879

    Article  CAS  Google Scholar 

  10. Xie L, Chen S, Hu Y, Lan Y, Li X, Deng Q, Wang J, Zeng Z, Deng S (2021) Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device. J Alloys Compd 858:157652

    Article  CAS  Google Scholar 

  11. Zhang Y, Du D, Li X, Sun H, Li L, Bai P, Xing W, Xue Q, Yan Z (2017) Electrostatic self-assembly of sandwich-like CoAl-LDH/polypyrrole/graphene nanocomposites with enhanced capacitive performance. ACS Appl Mater Interfaces 37:31699–31709

    Article  Google Scholar 

  12. Kuang H, Zhang H, Liu X, Chen Y, Zhang W, Chen H, Ling Q (2022) Microwave-assisted synthesis of NiCo-LDH/graphene nanoscrolls composite for supercapacitor. Carbon 190:57–67

    Article  CAS  Google Scholar 

  13. De S, Acharya S, Maity C, Sahoo S, Nayak G (2022) MXene (Ti3C2Tx)-/amine-functionalized graphene-supported self-assembled Co9S8 nanoflower for ultrastable hybrid supercapacitor. Ind Eng Chem Res 61:7727–7738

    Article  CAS  Google Scholar 

  14. Cai Y, Fang Y, Cao W, He P, Cao M (2021) MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy. J Alloys Compd 868:159159

    Article  CAS  Google Scholar 

  15. Li J, Han L, Li Y, Li J, Zhu G, Zhang X, Lu T, Pan L (2020) MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem Eng J 380:122590

    Article  CAS  Google Scholar 

  16. Zhang P, Zhu Q, Soomro RA, He S, Sun N, Qiao N, Xu B (2020) In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv Funct Mater 30:2000922

    Article  CAS  Google Scholar 

  17. Zhu Q, Li J, Simon P, Xu B (2021) Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Mater 35:630–660

    Article  Google Scholar 

  18. Zhang R, Dong J, Zhang W, Ma L, Jiang Z, Wang J, Huang Y (2022) Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor. Nano Energy 91:106633

    Article  CAS  Google Scholar 

  19. Zhao Z, Wu X, Luo C, Yang Y (2022) High capacitance and cycling stability of flexible-asymmetric-supercapacitor based on hierarchical NiAlP/NiAl-LDHs@MXene electrodes. J Power Sources 545:231910

    Article  CAS  Google Scholar 

  20. Niu H, Yang X, Wang Q, Jing QX, Cheng K, Zhu K, Ye K, Wang G, Cao D, Yan J (2020) Electrostatic self-assembly of MXene and edge-rich CoAl layered double hydroxide on molecular-scale with superhigh volumetric performances. J Energy Chem 46:105–113

    Article  Google Scholar 

  21. Zhou H, Wu F, Fang L, Jia H, Luo H, Guan T, Hu B (2020) Zhou. Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor. Int J Hydrogen Energy 45:13080–13089

    Article  CAS  Google Scholar 

  22. Fan Z, Wang Y, Xie Z, Wang D, Yuan Y, Kang H, Su B, Cheng Z, Liu Y (2018) Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci 5:1800750

    Article  Google Scholar 

  23. Yue L, Chen L, Wang X, Lu D, Zhou W, Shen D, Yang Q, Xiao S, Li Y (2023) Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors. Chem Eng J 451:138687

    Article  CAS  Google Scholar 

  24. Jing C, Zhu Y, Liu X, Ma X, Dong F, Dong B, Li S, Li N, Lan T, Zhang Y (2019) Morphology and crystallinity-controlled synthesis of etched CoAl LDO/MnO2 hybrid nanoarrays towards high performance supercapacitors. J Alloys Compd 806:917–925

    Article  CAS  Google Scholar 

  25. Liu Y, Yu C, Che H, Guo Z, Mu J, Zhang X, Liu A (2021) Ag nanoparticles-decorated CoAl-layered double hydroxide flower-like hollow microspheres for enhanced energy storage performance. J Colloid Interface Sci 581:485–495

    Article  CAS  PubMed  Google Scholar 

  26. Deka B, Hazarika A, Kwak M, Kim D, Jaiswal A, Lee H, Seo J, Jeong C, Jang J, Park Y, Park H (2021) Triboelectric nanogenerator-integrated structural supercapacitor with in situ MXene-dispersed N-doped Zn–Cu selenide nanostructured woven carbon fiber for energy harvesting and storage. Energy Storage Mater 43:402–410

    Article  Google Scholar 

  27. Chen W, Wei T, Mo L, Wu S, Li Z, Chen S, Zhang X, Hu L (2020) CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors. Chem Eng J 400:125856

    Article  CAS  Google Scholar 

  28. Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162:A5185–A5189

    Article  CAS  Google Scholar 

  29. Zhang Y, Cao J, Li J, Yuan Z, Li D, Wang L, Han W (2022) Self-assembled cobalt-doped NiMn-layered double hydroxide (LDH)/V2CTx MXene hybrids for advanced aqueous electrochemical energy storage properties. Chem Eng J 430:132992

    Article  CAS  Google Scholar 

  30. Zhang J, Li Y, Liang X, Liu Q, Chen Q, Chen M (2022) Sulfur vacancies-engineered Ni3S4‐x hollow microspheres with optimized anionic adsorption energy for high‐performance supercapacitor. Small 18:2106074

    Article  CAS  Google Scholar 

  31. Liu G, Qin Y, Lyu Y, Chen M, Qi P, Lu Y, Sheng Z, Tang Y (2021) Low-crystalline β-Ni(OH)2 nanosheets on nickel foam with enhanced areal capacitance for supercapacitor applications. Chem Eng J 426:131248

    Article  CAS  Google Scholar 

  32. Lv H, Xiao Z, Zhai S, Wang X, Hao J, An Q (2023) Designed formation of C/Fe3O4@Ni(OH)2 cathode with enhanced pseudocapacitance for asymmetric supercapacitors. J Colloid Interface Sci 635:176–185

    Article  CAS  PubMed  Google Scholar 

  33. He H, Chen Y, Yang C, Yang L, Jiang Q, Huang H (2022) Constructing 3D interweaved MXene/graphitic carbon nitride nanosheets/graphene nanoarchitectures for promoted electrocatalytic hydrogen evolution. J Energy Chem 67:483–491

    Article  CAS  Google Scholar 

  34. Yan W, Zeng H, Zhang K, Long Y, Wang M (2023) Ni-Co-Mn hydrotalcite-derived hierarchically porous sulfide for hybrid supercapacitors. J Colloid Interface Sci 635:379–390

    Article  CAS  PubMed  Google Scholar 

  35. Liu Z, Li A, Qiu Y, Zhao Q, Zhong Y, Cui L, Yang W, Razal J, Barrow C, Liu J (2021) MgCo2O4@NiMn layered double hydroxide core-shell nanocomposites on nickel foam as superior electrode for all-solid-state asymmetric supercapacitors. J Colloid Interface Sci 592:455–467

    Article  CAS  PubMed  Google Scholar 

  36. Xu X, Lu H, Xu D, Zhou P, Ying Y, Li L, Liu Y (2023) Oxygen-rich vacancies CuCo-LDH with 1D/2D nanoarray structure for high performance asymmetric supercapacitor. Appl Surf Sci 614:156174

    Article  CAS  Google Scholar 

  37. Chen X, Xin N, Li Y, Sun C, Li L, Ying Y, Shi W, Liu Y (2022) Novel 2D/2D NiCo2O4/ZnCo2O4@rGO/CNTs self-supporting composite electrode with high hydroxyl ion adsorption capacity for asymmetric supercapacitor. J Mater Sci Technol 127:236–244

    Article  CAS  Google Scholar 

  38. Kumar L, Boruah P, Borthakur S, Saikia L, Das M, Deka S (2021) CuCo-layered double hydroxide nanosheet-based polyhedrons for flexible supercapacitor cells, ACS Appl. Nano Mater 4:5250–5262

    CAS  Google Scholar 

  39. Cao W, Zhao W, Xiong C, Long Q, Chen N, Du G (2023) NiCo-MOF derived nanostructured NiCo-LDH@Ni(OH)2 heterogeneous composite as electrode material for hybrid supercapacitors. J Energy Storage 64:107213

    Article  Google Scholar 

  40. Hu W, Chen L, Du M, Song Y, Wu Z, Zheng Q (2020) Hierarchical NiCo-layered double hydroxide nanoscroll@PANI nanocomposite for high performance battery-type supercapacitor. Electrochim Acta 338:135869

    Article  CAS  Google Scholar 

  41. Wang X, Li H, Li H, Lin S, Bai J, Dai J, Liang C, Zhu X, Sun Y, Dou S (2019) Heterostructures of Ni–Co–Al layered double hydroxide assembled on V4C3 MXene for high-energy hybrid supercapacitors. J Mater Chem A 7:2291–2300

    Article  CAS  Google Scholar 

  42. Qin Q, Ou D, Ye C, Chen L, Lan B, Yan J, Wu Y (2019) Systematic study on hybrid supercapacitor of Ni-Co layered double hydroxide//activated carbons. Electrochim Acta 305:403–415

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the support of this work by the National Natural Science Foundation of China (No. 22375004) and the Engineering Research Project of Anhui Polytechnic University (HX-2021-06-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfu Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 766 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Wu, W., Tian, X. et al. Facial design and synthesis of CoAl-LDH-doped MXene with nanosheet structure for high-performance asymmetric supercapacitors. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05899-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05899-2

Keywords

Navigation