Skip to main content
Log in

Advances on lithium, magnesium, zinc, and iron-air batteries as energy delivery devices—a critical review

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This comprehensive review delves into recent advancements in lithium, magnesium, zinc, and iron-air batteries, which have emerged as promising energy delivery devices with diverse applications, collectively shaping the landscape of energy storage and delivery devices. Lithium-air batteries, renowned for their high energy density of 1910 Wh/kg and long life cycle, have seen remarkable improvements in performance and safety measures, making them the go-to choose for portable electronics and electric vehicles. Lithium-air batteries have promising safer and more efficient energy storage solution. However, their reliance on limited lithium resources has driven research into alternative chemistries. Magnesium-air batteries, characterized by high theoretical capacity and reduced flammability risks, have garnered significance due to their potential of high energy density (700 Wh/kg). Magnesium-air batteries also offer compelling prospects due to their abundance and environmentally friendly resource. Meanwhile, zinc air batteries having energy density (1087 Wh/kg), low cost, abundant material availability, and impressive cycle life offer an attractive solution for grid-scale energy storage. Additionally, iron-air batteries have emerged as eco-friendly options with energy efficiency of 50%, harnessing iron’s abundance and oxygen from the air. This review extracts recent research developments, offering insights into the strengths, challenges, and promising pathways for these battery systems, paving the way for a more diversified an environmentally conscious energy delivery landscape. While challenges such as electrode materials, electrolyte design, and safety concerns persist, the progress in these battery technologies presents exciting for more efficient and sustainable energy delivery systems, with potential benefits spanning from consumer electronics to renewable energy integration and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2021 Elsevier

Fig. 2

Copyright 2019 Elsevier

Fig. 3

Copyright 2022 Elsevier

Fig. 4

Copyright 2021 Elsevier

Fig. 5

Copyright 2019 Elsevier

Fig. 6

Copyright 2020 Elsevier

Fig. 7

Copyright 2015 John Willey & Sons

Fig. 8

Copyright 2021 Elsevier

Fig. 9

Copyright 2018 Elsevier

Fig. 10

Copyright 2018 Elsevier

Fig. 11

Copyright 2018 Elsevier

Similar content being viewed by others

References

  1. Van NR (2014) The rechargeable revolution: a better battery. Nature 507:26–28

    Article  Google Scholar 

  2. Liu W, Song MS, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29:1603436

    Article  Google Scholar 

  3. Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J (2011) Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Natl Chem 3(1):79–89

    Article  CAS  Google Scholar 

  4. Zhang J, Zhao Z, Xia Z, Dai L (2016) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Natl Nanotechnol 10:444–452

    Article  Google Scholar 

  5. Chin R, Li Q, Yu X, Chen L, Li H (2020) Approaching practically accessible solid state batteries. Chem Rev 120:6820–6877

    Article  Google Scholar 

  6. Claus D, Jurgen O, Besenhard T (2011) Handbook of battery materials Wiley 1:247–250

    Google Scholar 

  7. Mckerracher RD, Leon CP, Wills RGA, Shah AA, Walsh FC (2014) A review of the iron-air secondary battery for energy storage. Wiley-Online 5(3):197–206

    Google Scholar 

  8. Li Y, Wang X, Dong S, Chen X, Cui G (2016) Recent advances in non-aqueous electrolyte for rechargeable LiO2 batteries. Adv Energy Mater 6:160–161

    Article  Google Scholar 

  9. Liu W, Song M, Kong S, Cui B (2017) Flexible and sketchable energy storage: recent advances and future perspectives. Adv Mater 29:121–128

    CAS  Google Scholar 

  10. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  PubMed  Google Scholar 

  11. Koketsu T, Strasser P, Huang Y, Ma J (2021) Challenge in metal-air batteries: from the design to the performance of metal oxide-based electrocatalysts. Metal oxide-based nanostructured electrocatalysts for fuel cells, electrolyzers, and metal-air batteries. Elsevier, pp 187–212

    Chapter  Google Scholar 

  12. Chen K, Yang DY, Huang G, Zhang XB (2021) Lithium–air batteries: air-electrochemistry and anode stabilization. Acc Chem Res 54(3):632–641

    Article  CAS  PubMed  Google Scholar 

  13. Zhuk A, Belyaev G, Borodina T, Kiseleva E, Shkolnikov E, Tuganov V, . . . Zakharov V (2024) Magnesium-air battery with increased power using commercial alloy anodes. Energies 17(2):400

    Article  CAS  Google Scholar 

  14. Li W, Cheng L, Chen X, Liu Y, Liu Y, Liu Q, Huang Y (2023) Key materials and structural design in flexible and stretchable zinc-air batteries. Nano Energy 106:108039

    Article  CAS  Google Scholar 

  15. Liu M, Zhang Q, Zhang X, Fan H, Gao J, Jing Z, . . . Wang E (2023) A novel rechargeable magnesium–air battery using “All in one” Mg anode with high reversibility. Chem Eng J 472:145154

    Article  CAS  Google Scholar 

  16. Weinrich H, Durmus YE, Tempel H, Kungl H, Eichel RA (2019) Silicon and iron as resource-efficient anode materials for ambient-temperature metal-air batteries: a review. Materials 12(13):2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hemavathi S, Srirama S, Prakash AS (2023) Present and future generation of secondary batteries: a review. ChemBioEng Rev 10(6):1123–1145

    Article  CAS  Google Scholar 

  18. Shen C, Hu L, Duan Q, Liu X, Huang S, Jiang Y, . . . Zhang J (2023) Understanding lattice oxygen redox behavior in lithium-rich manganese-based layered oxides for lithium-ion and lithium-metal batteries from reaction mechanisms to regulation strategies. Adv Energy Mater 13(48):2302957

    Article  CAS  Google Scholar 

  19. Xu J, Cai X, Cai S, Shao Y, Hu C, Lu S, Ding S (2023) High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ Mater 6(5):e12450

    Article  CAS  Google Scholar 

  20. Khan FNU, Rasul MG, Sayem ASM, Mandal NK (2023) Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J Energy Storage 71:108033

    Article  Google Scholar 

  21. Bhattacharjee U, Ghosh S, Bhar M, Martha SK (2023) Electrochemical energy storage part II: hybrid and future systems. Emerging Trends in Energy Storage Systems and Industrial Applications. Academic Press, pp 595–617

    Chapter  Google Scholar 

  22. Nobuyuki I, Osamu Y (2014) Rechargeable lithium-air batteries: characteristics and prospects. Sci Direct 17:24–30

    Google Scholar 

  23. Liu T, Zhao S, Xiong Q, Yu J, Wang J, Huang G, . . . Zhang X (2023) Reversible discharge products in Li–air batteries. Adv Mater 35:2208925

    Article  CAS  Google Scholar 

  24. Wang W, Wan H, Cai W, Fang Y, Fan Z, Zhu Y, Qian Y (2023) The free-standing N-CoO matrix towards optimizing dual-electrodes for high-performance Li-O2 batteries. Chem Eng J 461:142004

    Article  CAS  Google Scholar 

  25. Yoo E, Lee U, Kelly JC, Wang M (2023) Life-cycle analysis of battery metal recycling with lithium recovery from a spent lithium-ion battery. Resour Conserv Recycl 196:107040

    Article  CAS  Google Scholar 

  26. Olabi AG, Onumaegbu C, Wilberforce T, Ramadan M, Abdelkareem MA, Al–Alami, AH (2021) Critical review of energy storage systems. Energy 214:118987

    Article  CAS  Google Scholar 

  27. Manohar A, Malkhandi K, Yang S, Prakash B, Narayanan SR (2012) Oxygen reduction reaction catalyst on lithium air battery discharge performance. J Electrochem Soc 159:1209–1214

    Article  Google Scholar 

  28. Gerhard K, Kenichiro O, Robert FS (2014) Lithium-air battery Springer 1:4419–6996

    Google Scholar 

  29. Steven JV, Vitality YN, Danil AB (2014) Aqueous and non-aqueous lithium-air batteries enabled by water soluble lithium metal electrodes. J Solid State Electrochem 18:1443–1456

    Google Scholar 

  30. Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamanoto O, Sammus N (2010) A novel high energy density rechargeable lithium air battery. Chem Commun J 46:1661–1664

    Article  CAS  Google Scholar 

  31. Li B, Liu Y, Zhang X, He P, Zhou H (2019) Hybrid polymer electrolyte for Li–O2 batteries. Green Energy Environ 4(1):3–19

    Article  Google Scholar 

  32. Zhong D, Wang K, Zuo Y, Wei M, Xiong J, Wang H, . . . Pei P (2023) Metal–air batteries for powering robots. J Mater Chem A 11(46):25115–25135

    Article  CAS  Google Scholar 

  33. Fan L, Wei S, Li S, Li Q, Lu Y (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8(11):1702657

    Article  Google Scholar 

  34. Yaqoob L, Noor T, Iqbal N (2022) An overview of metal-air batteries, current progress, and future perspectives. J Energy Storage 56:106075

    Article  Google Scholar 

  35. Zheng T, Hu Y, Zhang Y, Yang S, Pan F (2018) Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Mater Des 137:245–255

    Article  CAS  Google Scholar 

  36. Hazri NS, Basri S, Kamarudin SK, Zainoodin AM (2021) Critical review on development of magnesium alloy as anode in Mg-Air fuel cell and additives in electrolyte. Int J Energy Res 45(11):15739–15759

    Article  CAS  Google Scholar 

  37. Ling N, Song S, Wang C, Fan H, Zhang J, Wang L (2024) Novel dual-function electrolyte additive for high-power aqueous Mg-air battery: improvement of both discharge potential and utilization efficiency. Chem Eng Sci 285:119624

    Article  CAS  Google Scholar 

  38. Li Q, Xiong W, Yu S, Liu Y, Li J, Liu L, Bi X, Zhu G, Liu E, Zhooa Y, Wang B (2021) Effect of Gd content on the discharge and electrochemical behaviors of the magnesium alloy AZ31 as an anode for Mg-air battery. J Mater Sci 56:12789–12802

    Article  CAS  Google Scholar 

  39. Mahmood A, Kim JH, Park JW (2023) Development of an effective operation system in a magnesium-air desalination cell for electricity production with nitrogen and phosphorus removal. Desalination 545:116164

    Article  CAS  Google Scholar 

  40. Asmare M, Zegeye M, Ketema A (2024) Advancement of electrically rechargeable metal-air batteries for future mobility. Energy Rep 11:1199–1211

    Article  Google Scholar 

  41. Schreiber T, Netsch C, Eschweiler S, Wang T, Storek T, Baranski M, Müller D (2021) Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system. Energy 230:120894

    Article  Google Scholar 

  42. Pandey M, Deshmukh K, Raman A, Asok A, Appukuttan S, Suman GR (2024) Prospects of MXene and graphene for energy storage and conversion. Renew Sustain Energy Rev 189:114030

    Article  CAS  Google Scholar 

  43. Ma B, Jiang W, Ouyang L, Li H (2023) An eco-friendly electrolyte additive for high-power primary aqueous Mg–air batteries. Inorg Chem Front 10(23):6879–6891

    Article  CAS  Google Scholar 

  44. Mamoor M, Li Y, Wang L, Jing Z, Wang B, Qu G, . . . Xu L (2023) Recent progress on advanced high energy electrode materials for sodium ion batteries. Green Energy Resour 1:100033

    Article  Google Scholar 

  45. Miao L, Zhang J, Lv Y, Gan L, Liu M (2023) Dendrite-free engineering toward efficient zinc storage: recent progress and future perspectives. Chem A  Eur J 29(20):e202203973

    Article  CAS  Google Scholar 

  46. Kumar KK, Brindha R, Nandhini M, Selvam M, Saminathan K, Sakthipandi K (2019) Water-suspended graphene as electrolyte additive in zinc-air alkaline battery system. Ionics 25:1699–1706

    Article  CAS  Google Scholar 

  47. Yu J, Zhao CX, Liu JN, Li BQ, Tang C, Zhang Q (2020) Seawater-based electrolyte for zinc–air batteries. Green Chem Eng 1(2):117–123

    Article  Google Scholar 

  48. Qiao M, Titirici MM (2018) Engineering the interface of carbon electrocatalysts at the triple point for enhanced oxygen reduction reaction. Chem A Eur J 24(69):18374–18384

    Article  CAS  Google Scholar 

  49. Song Y, Li W, Zhang K, Han C, Pan A (2024) Progress on bifunctional carbon-based electrocatalysts for rechargeable zinc–air batteries based on voltage difference performance. Adv Energy Mater 14:2303352

    Article  CAS  Google Scholar 

  50. Saha P, Shaheen Shah S, Ali M, Nasiruzzaman Shaikh M, Aziz MA, Saleh Ahammad AJ (2024) Cobalt oxide-based electrocatalysts with bifunctionality for high-performing rechargeable zinc-air batteries. Chem Rec 24(1):e202300216

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Q, Stalin S, Zhao CZ, Archer LA (2020) Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 5(3):229–252

    Article  CAS  Google Scholar 

  52. Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z (2012) Highly active and durable core–corona structured bifunctional catalyst for rechargeable metal–air battery application. Nano Lett 12(4):1946–1952

    Article  CAS  PubMed  Google Scholar 

  53. Parra-Puerto A, Ng KL, Fahy K, Goode AE, Ryan MP, Kucernak A (2019) Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catal 9(12):11515–11529

    Article  CAS  Google Scholar 

  54. Wang Q, Kaushik S, Xiao X, Xu Q (2023) Sustainable zinc–air battery chemistry: advances, challenges and prospects. Chem Soc Rev 52:6139–6190

    Article  CAS  PubMed  Google Scholar 

  55. Iqbal A, El-Kadri OM, Hamdan NM (2023) Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J Energy Storage 62:106926

    Article  Google Scholar 

  56. Asmare M, Ketema A, Tessema D (2024) Recent advances in electrically rechargeable transition metal-based-air batteries for electric mobility. Inorg Chem Commun 159:111742

    Article  Google Scholar 

  57. Wang HF, Xu Q (2019) Materials design for rechargeable metal-air batteries. Matter 1(3):565–595

    Article  CAS  Google Scholar 

  58. Zhao X, Xu N, Li X, Gong Y, Huang K (2012) Energy storage characteristics of a new rechargeable solid oxide iron–air battery. RSC Adv 2(27):10163–10166

    Article  CAS  Google Scholar 

  59. McKerracher RD, Ponce de Leon C, Wills RGA, Shah AA, Walsh FC (2015) A review of the iron–air secondary battery for energy storage. ChemPlusChem 80(2):323–335

    Article  CAS  Google Scholar 

  60. Posada JO, Rennie AJ, Villar SP, Martins VL, Marinaccio J, Barnes A, Glover CF, Worsley DA, Hall PJ (2017) Aqueous batteries as grid scale energy storage solutions. Renew Sustain Energy Rev 68:1174–1182

    Article  CAS  Google Scholar 

  61. Lin J, Zhang X, Fan E, Chen R, Wu F, Li L (2023) Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications. Energy Environ Sci 16(3):745–791

    Article  Google Scholar 

  62. Zhang S, Yang Y, Cheng L, Sun J, Wang X, Nan P, . . . Wang JQ (2021) Quasi-solid-state electrolyte for rechargeable high-temperature molten salt iron-air battery. Energy Storage Mater 35:142–147

    Article  Google Scholar 

  63. Famprikis T, Canepa P, Dawson JA, Masquelier M (2019) Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 18:1278–1291

    Article  CAS  PubMed  Google Scholar 

  64. Xie Y, Li H, Tang C, Li S, Li J, Lv Y, Wei X, Song Y (2014) Synthesis of a metallic mesoporous pyrochlore as a catalyst for iron-air rechargeable batteries. J Mater Chem A 2:1631–1635

    Article  CAS  Google Scholar 

  65. Ajay DP, Ayush O, Anil SK, Sachin UB, Jitendra SR (2021) Recent researches on Cu-Ni alloy matrix composites through electrodeposition and powder metallurgy methods: A review. Mater Today Proc 47:3301–3308

    Article  Google Scholar 

  66. Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004) Recent advances in polymer nanofibers. J Nanosci Nanotechnol 4(1–2):52–65

    CAS  PubMed  Google Scholar 

  67. Manohar AK, Malkhandi S, Yang B, Prakash GKS, Narayanan SR (2012) Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J Electrochem Soc 159:1209–1214

    Article  Google Scholar 

  68. Li J, Wang S, Chen X, Xiao T, Tan X, Xiang P, Jiang L (2018) Enhancing electrochemical performance of Fe2O3 via in situ sulfurization and carbon coating modification for nickel-iron rechargeable batteries. Electrochim Acta 290:332–338

    Article  CAS  Google Scholar 

  69. Manohar AK, Yang C, Malkhandi S, Prakash GS, Narayanan SR (2013) Enhancing the performance of the rechargeable iron electrode in alkaline batteries with bismuth oxide and iron sulfide additives. J Electrochem Soc 160(11):A2078

    Article  CAS  Google Scholar 

  70. Reda AT, Pan M, Zhang D, Xu X (2021) Bismuth-based materials for iodine capture and storage: a review. J Environ Chem Eng 9(4):105279

    Article  Google Scholar 

  71. Zoladek S, Blicharska-Sobolewska M, Krata AA, Rutkowska IA, Wadas A, Miecznikowski K, Kulesza PJ (2020) Heteropolytungstate-assisted fabrication and deposition of catalytic silver nanoparticles on different reduced graphene oxide supports: Electroreduction of oxygen in alkaline electrolyte. J Electroanal Chem 875:114694.s

    Article  Google Scholar 

  72. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404

    Article  CAS  PubMed  Google Scholar 

  73. Trocino S, Zignani SC, Lo Faro M, Antonucci V, Aricò AS (2017) Iron–air battery operating at high temperature. Energ Technol 5(5):670–680

    Article  CAS  Google Scholar 

  74. Wang WH, Han CH, Hong WX, Chiu YC, Tseng IH, Chang YH, . . . Li YY (2024) NiFe layered double hydroxide (LDH) anchored, Fe single atom and nanoparticle embedded on nitrogen-doped carbon-CNT (carbon nanotube) framework as a bifunctional catalyst for rechargeable zinc-air batteries. J Energy Storage 85:111058

    Article  Google Scholar 

  75. Javed N, Noor T, Iqbal N, Naqvi SR (2023) A review on development of metal–organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal–air batteries. RSC Adv 13(2):1137–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gu Z, Xin X, Men M, Zhou Y, Wu J, Sun Y, Yao X (2023) Advancements, challenges, and prospects in rechargeable solid-state lithium-air batteries. Batter Supercaps 6(10):e202300267

    Article  CAS  Google Scholar 

  77. Li J, Ding S, Zhang S, Yan W, Ma ZF, Yuan X, . . . Zhang J (2021) Catalytic redox mediators for non-aqueous Li-O2 battery. Energy Storage Mater 43:97–119

    Article  CAS  Google Scholar 

  78. Zhang T, Jiang Y, Zhou H (2021) Carbon-based catalysts for lithium–air batteries: progress, challenges, and perspectives. Chem Soc Rev 50(1):111–134

    Google Scholar 

  79. Shi S, Shen Z, Li S, Wang Q, Wen R, Liu B (2023) High-yield synthesis of colloidal carbon rings and their applications in self-standing electrodes of Li–O2 batteries. J Am Chem Soc 145(50):27664–27671

    Article  CAS  PubMed  Google Scholar 

  80. Zhang TR, Tao ZL, Chen J (2014) Magnesium-air batteries: from principle to application. Mater Horiz 1(3):113–119

    Google Scholar 

  81. Robinson JL, King PF (1961) Electrochemical behavior of the magnesium anode. J Electrochem Soc 108(1):36

    Article  CAS  Google Scholar 

  82. Blurton KF, Sammells AF (1979) Metal/air batteries: their status and potential—a review. J Power Sources 4(4):263–279

    Article  CAS  Google Scholar 

  83. Höche D, Lamaka SV, Vaghefinazari B, Braun T, Petrauskas RP, Fichtner M, Zheludkevich ML (2018) Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives. Sci Rep 8(1):7578

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vaghefinazari B, Snihirova D, Wang C, Wang L, Deng M, Höche D, . . . Zheludkevich ML (2022) Exploring the effect of sodium salt of ethylenediaminetetraacetic acid as an electrolyte additive on electrochemical behavior of a commercially pure Mg in primary Mg-air batteries. J Power Sources 527:231176

    Article  CAS  Google Scholar 

  85. Huang X, Dai Q, Xiang Q, Yang N, Zhang G, Shen A, Li W (2024) Microstructure design of advanced magnesium-air battery anodes. J Magnes Alloy 12:2213–9567

    Article  Google Scholar 

  86. Zhang J, Zhang H, Zhang Y, Wang X, Li H, Feng F, . . . Zhang Y (2023) Approaches to construct high-performance Mg-air batteries: from mechanism to materials design. J Mater Chem A 11:7924–7948

    Article  CAS  Google Scholar 

  87. Zhu AL, Wilkinson DP, Zhang X, Xing Y, Rozhin AG, Kulinich SA (2016) Zinc regeneration in rechargeable zinc-air fuel cells—a review. J Energy Storage 8:35–50

    Article  Google Scholar 

  88. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z (2017) Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv Mater 29(7):1604685

    Article  Google Scholar 

  89. Zhang Y, Deng YP, Wang J, Jiang Y, Cui G, Shui L, . . . Chen Z (2021) Recent progress on flexible Zn-air batteries. Energy Storage Mater 35:538–549

    Article  Google Scholar 

  90. Wang C, Li J, Zhou Z, Pan Y, Yu Z, Pei Z, . . . Chen Y (2021) Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem 3(4):100055

    Article  CAS  Google Scholar 

  91. Bi X, Jiang Y, Chen R, Du Y, Zheng Y, Yang R, . . . Chen Z (2023) Rechargeable zinc–air versus lithium–air battery: from fundamental promises toward technological potentials. Adv Energy Mater 2302388

  92. Sun W, Wang F, Zhang B, Zhang M, Küpers V, Ji X, . . . Winter M (2021) A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371(6524):46–51

    Article  CAS  PubMed  Google Scholar 

  93. Fang C, Tang X, Wang J, Yi Q (2023) Performance of iron-air battery with iron nanoparticle-encapsulated C-N composite electrode. Front Energy. https://doi.org/10.1007/s11708-023-0913-5

    Article  Google Scholar 

  94. Yadav JK, Rani B, Dixit A (2023) Capacity degradation analysis of the rechargeable iron ion batteries using post-mortem analysis and the impedance spectroscopy. Ionics 29(4):1497–1506

    Article  CAS  Google Scholar 

  95. Arfeen ZA, Abdullah MP, Hassan R, Othman BM, Siddique A, Rehman AU, Sheikh UU (2020) Energy storage usages: engineering reactions, economic-technological values for electric vehicles—a technological outlook. Int Trans Electr Energy Syst 30(9):e12422

    Article  Google Scholar 

  96. Majid M (2020) Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energy Sustain Soc 10(1):1–36

    Google Scholar 

  97. Islam MT, Iyer-Raniga U (2022) Lithium-ion battery recycling in the circular economy: a review. Recycling 7(3):33

    Article  Google Scholar 

  98. Guo Z, Zhao S, Li T, Su D, Guo S, Wang G (2020) Recent advances in rechargeable magnesium-based batteries for high-efficiency energy storage. Adv Energy Mater 10(21):1903591

    Article  CAS  Google Scholar 

  99. Hosseini S, Soltani SM, Li YY (2021) Current status and technical challenges of electrolytes in zinc–air batteries: an in-depth review. Chem Eng J 408:127241

    Article  CAS  Google Scholar 

  100. He Z, Xiong F, Tan S, Yao X, Zhang C, An Q (2021) Iron metal anode for aqueous rechargeable batteries. Mater Today Adv 11:100156

    Article  CAS  Google Scholar 

  101. Squillace M (2024) The minerals challenge for renewable energy. Env’t L Rep 54:10058

    Google Scholar 

  102. Olabi AG, Wilberforce T, Sayed ET, Abo-Khalil AG, Maghrabie HM, Elsaid K, Abdelkareem MA (2022) Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy 254:123987

    Article  Google Scholar 

  103. Yang R, Yao W, Tang B, Zhang F, Lei X, Lee CS, Tang Y (2021) Development and challenges of electrode materials for rechargeable Mg batteries. Energy Storage Mater 42:687–704

    Article  Google Scholar 

  104. Du W, Ang EH, Yang Y, Zhang Y, Ye M, Li CC (2020) Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Sci 13(10):3330–3360

    Article  CAS  Google Scholar 

  105. Figueredo-Rodríguez HA, McKerracher RD, Insausti M, Garcia Luis A, Ponce de Leόn C, Alegre C, Baglio V, Aricò AS, Walsh FC (2017) A rechargeable, aqueous iron air battery with nanostructured electrodes capable of high energy density operation. J Electrochem Soc 164:A1148

    Article  Google Scholar 

  106. Oakey A, Grote M, Royall PG, Cherrett T (2022) Enabling safe and sustainable medical deliveries by connected autonomous freight vehicles operating within dangerous goods regulations. Sustainability 14(2):930

    Article  CAS  Google Scholar 

  107. Giosuè C, Marchese D, Cavalletti M, Isidori R, Conti M, Orcioni S, . . . Stipa P (2021) An exploratory study of the policies and legislative perspectives on the end-of-life of lithium-ion batteries from the perspective of producer obligation. Sustainability 13(20):11154

    Article  Google Scholar 

  108. Sequeira AR, McHenry MP, Morrison-Saunders A, Mtegha H, Doepel D (2016) Is the Extractive Industry Transparency Initiative (EITI) sufficient to generate transparency in environmental impact and legacy risks? The Zambian minerals sector. J Clean Prod 129:427–436

    Article  Google Scholar 

  109. Du K, Ang EH, Wu X, Liu Y (2022) Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy Environ Mater 5(4):1012–1036

    Article  CAS  Google Scholar 

  110. Jorge C (2023) Degradation of urban soil quality due to air and road traffic: relevant info and research. Environ Geotech 40(XXXX):1–19

    Google Scholar 

  111. Li CS, Sun Y, Gebert F, Chou SL (2017) Current progress on rechargeable magnesium–air battery. Adv Energy Mater 7(24):1700869

    Article  Google Scholar 

  112. Brock A (2023) Securing accumulation by restoration–Exploring spectacular corporate conservation, coal mining and biodiversity compensation in the German Rhineland. Environ Plan E Nat Space 6(4):2134–2165

    Article  Google Scholar 

  113. Itani K, De Bernardinis A (2023) Review on new-generation batteries technologies: trends and future directions. Energies 16(22):7530

    Article  CAS  Google Scholar 

  114. Green JM, Hartman B, Glowacki PF (2016) A system-based view of the standards and certification landscape for electric vehicles. World Electr Veh J 8(2):564–575

    Article  Google Scholar 

  115. Porzio J, Scown CD (2021) Life-cycle assessment considerations for batteries and battery materials. Adv Energy Mater 11(33):2100771

    Article  CAS  Google Scholar 

  116. Bleischwitz R, Bringezu S (2008) Global governance for sustainable resource management. Miner Energy-Raw Mater Rep 23(2):84–101

    Article  Google Scholar 

  117. Rissman J, Bataille C, Masanet E, Aden N, Morrow WR III, Zhou N, . . . Helseth J (2020) Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl Energy 266:114848

    Article  CAS  Google Scholar 

  118. Liu W, Placke T, Chau KT (2022) Overview of batteries and battery management for electric vehicles. Energy Rep 8:4058–4084

    Article  Google Scholar 

  119. Narayanan SR, Prakash GS, Manohar A, Yang B, Malkhandi S, Kindler A (2012) Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ionics 216:105–109

    Article  CAS  Google Scholar 

  120. Phadke R (2018) Green energy futures: responsible mining on Minnesota’s Iron Range. Energy Res Soc Sci 35:163–173

    Article  Google Scholar 

  121. Gao M, Song Y, Zou X, Salla M, Zhang H, Wang Z, . . . Wang Q (2023) A redox-mediated iron-air fuel cell for sustainable and scalable power generation. Adv Energy Mater 13(38):2301868

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Ikeuba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeuba, A.I., Iwuji, P.C., Nabuk, II.E. et al. Advances on lithium, magnesium, zinc, and iron-air batteries as energy delivery devices—a critical review. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05866-x

Keywords

Navigation