Skip to main content
Log in

Efficient oxidation by sono-photo-electrocatalysis of rhodamine B using MgFe2O4 as photoanode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present work describes the colour removal of Rhodamine B (Rh B), a cationic dye by photo-electrocatalysis and sono-photo-electrocatalysis on MgFe2O4 as an anode. The spinel MgFe2O4 synthesized by sol–gel route was characterized by physical and electrochemical methods, a preamble of Rh B oxidation. The XRD pattern shows the formation of the single phase, which crystallizes in a face-centred cubic lattice (space group, Fd − 3 m), with spherical crystallites (0.42 nm). The Zeta-sizer analysis gives an average grain size of 0.46 µm and a zeta potential of − 30 mV. The SEM analysis revealed the porosity of the oxide and the Mg-O and Fe–O bonds were confirmed by the FT-IR analysis. The direct optical gap (2.16 eV) assigned to d − d internal transition comes from the crystal field splitting of Fe3+ octahedrally coordinated. The low electron mobility is assigned to a narrow conduction band of Fe3+—3d parentage with activation energy (0.12 eV) in conformity with a conduction mechanism by small lattice polaron hopping. The intensity potential J(E) profile in Na2SO4 (10−2 M) exhibits a small hysteresis similar to a chemical diode. The semi-logarithmic plot (logJ − E) indicates the chemical stability of MgFe2O4 in the working solution (Na2SO4). Curiously and unlike most spinels, the capacitance plot exhibits n-type conduction confirmed by chrono-amperometry, plotted at the free potential (+ 0.5 V) with a flat band potential (Efb) of 0.29 V, due to Fe3+ insertion. As an application, Rh B (20 mg L−1) was successfully oxidized by photo-electrocatalysis on MgFe2O4 with an abatement of 75% under solar irradiation and a direct current of 150 mA which has a bactericidal effect. An enhancement up to 97% has been reached by sono-photo-electrocatalysis at a frequency of 60 kHz; almost complete discoloration occurred within 90 min in the “US-Electric Current-Sunlight-MgFe2O4”. The Rh B elimination follows a pseudo-first-order kinetic with a rate constant of 3.9 × 10−2 mn−1 (t1/2 = 18 min), and a reaction mechanism is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bauer C, Jacques P, Kalt A (2001) Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J Photochem Photobiol A Chem 140:87–92. https://doi.org/10.1016/s1010-6030(01)00391-4

    Article  CAS  Google Scholar 

  2. Hoffmann MR, Hua I, Höchemer R (1996) Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrason Sonochem 3:S163–S172. https://doi.org/10.1016/S1350-4177(96)00022-3

    Article  CAS  Google Scholar 

  3. Terki M, Triaa S, Ali FK, Youcef R, Brahim IO, Trari M (2023) Sono-assisted degradation of rhodamine B using the Fe modified MgO nanostructures: characterization and catalytic activity. React Kinet Mech Catal 136:1143–1155. https://doi.org/10.1007/s11144-023-02388-x

    Article  CAS  Google Scholar 

  4. Henglein A (1987) Sonochemistry: Historical developments and modern aspects. Ultrasonics 25:6–16. https://doi.org/10.1016/0041-624x(87)90003-5

    Article  CAS  Google Scholar 

  5. Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715. https://doi.org/10.1021/ie010096l

    Article  CAS  Google Scholar 

  6. Vinu R, Madras G (2008) Kinetics of Sonophotocatalytic Degradation of Anionic Dyes with Nano-TiO2. Environ Sci Technol 43:473–479. https://doi.org/10.1021/es8025648

    Article  ADS  CAS  Google Scholar 

  7. Ren X, Chen X, Ding H, Yang H (2015) Luminescent and magnetic properties of CoFe2O4@SiO2@Y2O3:Tb3+ nanocomposites with the core–shell. J Alloys Compd 625:85–89. https://doi.org/10.1016/j.jallcom.2014.11.053

    Article  CAS  Google Scholar 

  8. Routray KL, Saha S (2020) Nanosized CoFe2O4-graphene nanoplatelets with massive dielectric enhancement for high frequency device application. Mater Sci Eng B 257:114548–114548. https://doi.org/10.1016/j.mseb.2020.114548

    Article  CAS  Google Scholar 

  9. Balal A, Jafarabadi YP, Demir A, Igene M, Giesselmann M, Bayne S (2023) Forecasting solar power generation utilizing machine learning models in Lubbock. Emerg Sci J 7:1052–1062. https://doi.org/10.28991/esj-2023-07-04-02

    Article  Google Scholar 

  10. Pang B, Lin S, Shi Y et al (2019) Synthesis of CoFe2O4/graphene composite as a novel counter electrode for high performance dye-sensitized solar cells. Electrochim Acta 297:70–76. https://doi.org/10.1016/j.electacta.2018.11.170

    Article  CAS  Google Scholar 

  11. Lahmar H, Benamira M, Douafer S, Messaadia L, Boudjerda A, Trari M (2020) Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light. Chem Phys Lett 742:137–132. https://doi.org/10.1016/j.cplett.2020.137132

    Article  CAS  Google Scholar 

  12. Xia C, Ren T, Darabi R, Shabani-Nooshabadi M, Klemeš JJ, Karaman C, Karimi F, Wu Y, Kamyab H, Vasseghian Y, Chelliapan S (2023) Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor. Energy 270:126914. https://doi.org/10.1016/j.energy.2023.126914

    Article  CAS  Google Scholar 

  13. Widjaja RG, Asrol M, Agustono I, Djuana E, Harito C, Elwirehardja GN, Pardamean B, Gunawan FE, Pasang T, Speaks D, Hossain E, Budiman AS (2023) State of charge estimation of lead acid battery using neural network for advanced renewable energy systems. Emerg Sci J 7:691–703. https://doi.org/10.28991/esj-2023-07-03-02

    Article  Google Scholar 

  14. Douafer S, Lahmar H, Laouici R, Akika FZ, Trari M, Avramova I, Benamira M (2023) Synthesis and characterization of CdFe2O4 nanoparticles: application for the removal of methyl green under solar irradiation. Mater Today Commun 35:105630–105630. https://doi.org/10.1016/j.mtcomm.2023.105630

    Article  CAS  Google Scholar 

  15. Nguyen VH, Nguyen BS, Jin Z, Shokouhimehr M, Jang HW, Hu C, Singh P, Raizada P, Peng W, Shiung Lam S, Xia C, Nguyen CC, Kim SY, Le QV (2020) Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem Eng J 402:126184. https://doi.org/10.1016/j.cej.2020.126184.

    Article  CAS  Google Scholar 

  16. Truong HB, Huy BT, Lee YI, Nguyen HT, Cho J, Hur J (2023) Magnetic visible-light activated photocatalyst CuFe2O4/Bi2WO6/mpg-C3N4 for the treatment of natural organic matter. Chem Eng J 453:139777. https://doi.org/10.1016/j.cej.2022.139777

    Article  CAS  Google Scholar 

  17. Fikri E, Sulistiawan IA, Riyanto A, Saputra AE (2023) Neutralization of acidity (pH) and reduction of total suspended solids (TSS) by solar-powered electrocoagulation system. Civ Eng J 9:1160–1172. https://doi.org/10.28991/cej-2023-09-05-09

    Article  Google Scholar 

  18. Gupta AK, Pal A, Sahoo C (2006) Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2. Dyes Pigments 69:224–232. https://doi.org/10.1016/j.dyepig.2005.04.001

    Article  CAS  Google Scholar 

  19. Cheng Y, Zou B, Yang J-Y, Wang C, Liu Y, Fan X, Zhu L, Wang Y, Ma H, Cao X (2011) Fabrication of CoFe2O4 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic properties. CrystEngComm 13:2268–2268. https://doi.org/10.1039/c0ce00802h

    Article  CAS  Google Scholar 

  20. Shi W, Liu Y, Shi Y, Sun W, Zhang K, Hong Y, Lin X, Guo F, Du X (2023) Realization of photocatalytic hydrogen production by optimizing energy band structure and promoting charges separation over the S-doped CoFe2O4 microrods. Materialstoday 35:105588. https://doi.org/10.1016/j.mtcomm.2023.105588

    Article  CAS  Google Scholar 

  21. Abd-Elsalam K, Zāḥid M (2021) Aquananotechnology: applications of nanomaterials for water purification. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  22. Kotnala RK, Shah J, Mathpal MC (2011) Influence of annealing on humidity response of RF sputtered nanocrystalline MgFe2O4 thin films. Thin Solid Films 519:6135–6139. https://doi.org/10.1016/j.tsf.2011.03.120

    Article  ADS  CAS  Google Scholar 

  23. Hussein SI, Elkady AS, Rashad MM, Mostafa A, Megahid R (2015) Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction. J Magn Magn Mater 379:9–15. https://doi.org/10.1016/j.jmmm.2014.11.079

    Article  ADS  CAS  Google Scholar 

  24. Dang HT, Nguyen TMT, Nguyen TT, Thi SQ, Tran HT, Tran HQ, Le TK (2016) Magnetic CuFe2O4 prepared by polymeric precursor method as a reusable heterogeneous Fenton-like catalyst for the efficient removal of methylene blue. Chem Eng Commun 203:1260–1268. https://doi.org/10.1080/00986445.2016.1174858

    Article  CAS  Google Scholar 

  25. Gyu KH, Pramod B, Suk JJ, Duck JE, Ok-Sang J, Jae SY, Sung LJ (2009) Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem Commun 39:5889–5889. https://doi.org/10.1039/b911805e

    Article  CAS  Google Scholar 

  26. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Physica status solidi (b) 15:627–637. https://doi.org/10.1002/pssb.19660150224

    Article  ADS  CAS  Google Scholar 

  27. Atrak K, Ramazani A, Fardood ST (2018) A novel sol–gel synthesis and characterization of MgFe2O4@γ–Al2O3 magnetic nanoparticles using tragacanth gel and its application as a magnetically separable photocatalyst for degradation of organic dyes under visible light. J Mater Sci Mater Electron 29:6702–6710. https://doi.org/10.1007/s10854-018-8656-5

    Article  CAS  Google Scholar 

  28. Dehaart L, Blasse G (1985) Photoelectrochemical properties of ferrites with the spinel structure. Solid State Ion 16:137–139. https://doi.org/10.1016/0167-2738(85)90035-9

    Article  CAS  Google Scholar 

  29. Nowak M, Kauch B, Szperlich P (2009) Sonochemical preparation of SbSeI gel. Ultrason Sonochem 16:546–551. https://doi.org/10.1016/j.ultsonch.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  30. Rajini R, Ferdinand AC (2023) Effects of annealing on the structural, morphological and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by chemical precipitation. Chem Data Coll 44:100985–100985. https://doi.org/10.1016/j.cdc.2022.100985

    Article  CAS  Google Scholar 

  31. Hammache Z, Soukeur A, Omeiri S, Bellal B, Trari M (2019) Physical and photo-electrochemical properties of MgFe2O4 prepared by sol gel route: application to the photodegradation of methylene blue. J Mater Sci: Mater Electron 30:5375–5382. https://doi.org/10.1007/s10854-019-00830-2

    Article  CAS  Google Scholar 

  32. Rekhila G, Bessekhouad Y, Trari M (2013) Visible light hydrogen production on the novel ferrite NiFe2O4. Int J Hydrogen Energy 38:6335–6343. https://doi.org/10.1016/j.ijhydene.2013.03.087

    Article  CAS  Google Scholar 

  33. Rouibah K, Akika FZ, Rouibah C, Boudermine HR, Douafer S, Boukerche S, Boukerche G, Benamira M (2023) Solar photocatalytic degradation of methyl green on CuFe2O4/α Fe2O3 heterojunction. Inorg Chem Commun 148:110361. https://doi.org/10.1016/j.inoche.2022.110361

    Article  CAS  Google Scholar 

  34. Gerischer H (1980) Photoassisted interfacial electron transfer. Surf Sci 101:518–530. https://doi.org/10.1016/0039-6028(80)90646-9

    Article  ADS  CAS  Google Scholar 

  35. Omeiri S, Hadjarab B, Trari M (2011) Photoelectrochemical properties of anodic silver sulphide thin films. Thin Solid Films 519:4277–4281. https://doi.org/10.1016/j.tsf.2011.02.001

    Article  ADS  CAS  Google Scholar 

  36. Shetty K, Nagaswarupa HP, Rangappa D (2018) Comparison study of Solgel and combustion method for synthesis nano spinel MgFe2O4 and its influence on electrochemical activity. Mater Today: Proc 5:22362–22367. https://doi.org/10.1016/j.matpr.2018.06.603

    Article  CAS  Google Scholar 

  37. Kaneko M, Okura I (2003) Photo catalysis science and technology, 1st edn. Springer, Japan

    Google Scholar 

  38. Maitra S, Mitra R, Nath TK (2021) Investigation of electrochemical performance of sol-gel derived MgFe2O4 nanospheres as aqueous supercapacitor electrode and bi-functional water splitting electrocatalyst in alkaline medium. Curr Appl Phys 27:73–88. https://doi.org/10.1016/j.cap.2021.04.009

    Article  ADS  Google Scholar 

  39. Papagiannis I, Koutsikou G, Frontistis Z, Konstantinou I, Avgouropoulos G, Mantzavinos D, Lianos P (2018) Photoelectrocatalytic vs. photocatalytic degradation of organic water born pollutants. Catalysts 8:455. https://doi.org/10.3390/catal8100455

    Article  CAS  Google Scholar 

  40. Brillas E, Garcia-Segura S, Skoumal M, Arias C (2010) Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes. Chemosphere 79:605–612. https://doi.org/10.1016/j.chemosphere.2010.03.004

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Sahmi A, Bensadok K, Zirour H, Trari M (2017) Physical and photoelectrochemical characterizations of SrWO4 prepared by thermal decomposition. Application to the photo electro-oxidation of ibuprofen, Journal of Solid State Electrochemistry. 21:2817–2824. https://doi.org/10.1007/s10008-017-3599-y

    Article  CAS  Google Scholar 

  42. Zhang W, Jin Z, Chen Z (2022) Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals. Adv Sci 9:2105204–2105204. https://doi.org/10.1002/advs.202105204

    Article  CAS  Google Scholar 

  43. Xue X, Chen R, Yan C, Zhao P, Hu Y, Zhang W, Yang S, Jin Z (2019) Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res 12:1229–1249. https://doi.org/10.1007/s12274-018-2268-5

    Article  CAS  Google Scholar 

  44. Boutal N, Rekhila G, Taïbi K, Trari M (2014) Relaxor ferroelectric and photo-electrochemical properties of lead-free Ba1−xEu2x/3(Ti0.75Zr0.25)O3 ceramics. Application to chromate reduction. Sol Energ 99:291–298. https://doi.org/10.1016/j.solener.2013.11.019

    Article  ADS  CAS  Google Scholar 

  45. Xue X, Chen H, Xiong Y, Chen R, Jiang M, Fu G, Xi Z, Zhang XL, Ma J, Fang W, Jin Z (2021) Near-infrared-responsive photo-driven nitrogen fixation enabled by oxygen vacancies and sulfur doping in black TiO2–xSy nanoplatelets. ACS Appl Mater Interfaces 13:4975–4983. https://doi.org/10.1021/acsami.0c17947

    Article  CAS  PubMed  Google Scholar 

  46. Hua W, Kang Y (2023) Synergistic degradation of orange G in water via water surface plasma assisted with β-Bi2O3/CaFe2O4. Environ Eng 40:1122–1132. https://doi.org/10.1007/s11814-022-1278-x

    Article  CAS  Google Scholar 

  47. Sahmi A, Laib R, Omeiri S, Bensadok K, Trari M (2019) Photoelectrochemical properties of Ba2TiO4 prepared by nitrate route. Application to electro-photocatalysis of phenobarbital mineralization by solar light, Journal of Photochemistry and Photobiology A: Chemistry. 372:29–34. https://doi.org/10.1016/j.jphotochem.2018.12.003

    Article  CAS  Google Scholar 

  48. Elhadj M, Samira A, Mohamed T, Djawad F, Asma A, Djamel N (2019) Removal of basic red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies. Sep Sci Technol 55:867–885. https://doi.org/10.1080/01496395.2019.1577896

    Article  CAS  Google Scholar 

  49. Xue X, Chen R, Yan C, Hu Y, Zhang W, Yang S, Ma L, Zhu G, Jin Z (2019) Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 11:10439–10445. https://doi.org/10.1039/c9nr02279a

    Article  CAS  PubMed  Google Scholar 

  50. Zhang W, Hu Y, Yan C, Hong D, Chen R, Xue X, Yang S, Tian Y, Tie Z, Jin Z (2019) Surface plasmon resonance enhanced direct Z-scheme TiO2/ZnTe/Au nanocorncob heterojunctions for efficient photocatalytic overall water splitting. Nanoscale 11:9053–9060. https://doi.org/10.1039/c9nr01732a

    Article  CAS  PubMed  Google Scholar 

  51. Sahmi A, Omeiri S, Bensadok K, Trari M (2019) Electrochemical properties of the scheelite BaWO4 prepared by co-precipitation: application to electro-photocatalysis of ibuprofen degradation. Mater Sci Semicond Process 91:108–114. https://doi.org/10.1016/j.mssp.2018.11.017

    Article  CAS  Google Scholar 

  52. Carp O (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

    Article  ADS  CAS  Google Scholar 

  53. Torres RA, Nieto JI, Combet E, Pétrier C, Pulgarin C (2008) Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water. Appl Catal B: Environ 80:168–175. https://doi.org/10.1016/j.apcatb.2007.11.013

    Article  CAS  Google Scholar 

  54. Inazu K, Nagata Y, Maeda Y (1993) Decomposition of chlorinated hydrocarbons in aqueous solutions by ultrasonic irradiation. Chem Lett 22:57–60. https://doi.org/10.1246/cl.1993.57

    Article  Google Scholar 

  55. Bejarano-Pérez NJ, Suárez-Herrera MF (2008) Sonochemical and sonophotocatalytic degradation of malachite green: the effect of carbon tetrachloride on reaction rates. Ultrason Sonochem 15:612–617. https://doi.org/10.1016/j.ultsonch.2007.09.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sahmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 367 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmi, A., Bensadok, K. & Trari, M. Efficient oxidation by sono-photo-electrocatalysis of rhodamine B using MgFe2O4 as photoanode. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05852-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05852-3

Keywords

Navigation