Skip to main content
Log in

Lignin/soy protein isolate-based hydrogel polymer electrolytes for flexible solid-state supercapacitors with low temperature resistance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Owing to the increasing low-carbon demand, environmentally friendly supercapacitors with low temperature resistance have attracted increasing attention. Herein, biomass hydrogels were successfully fabricated by covalently cross-linked lignin (Lig) with soy protein isolate (SPI) and assembled into supercapacitors. The performance of hydrogel electrolytes and the electrochemical performance of supercapacitors were studied systematically. The hydrogel electrolyte achieved the highest ionic conductivity of 0.086 S cm−1 with 50% addition of SPI. The supercapacitor displayed an excellent specific capacitance of 150.80 F g−1 at room temperature. Importantly, over 10,000 charge-discharge cycles, the capacitance retention rate maintained more than 73.5%, and the coulombic efficiency was around 100%. Besides, the electrochemical performance of the supercapacitors at low temperature was investigated as well. Even at −20 °C, the flexible supercapacitor could keep a specific capacitance of 135.71 F g−1, with a capacitance retention rate up to 90% of room temperature, indicating a prominent resistance at subzero temperature. Overall, this work lays a foundation for the preparation of environmentally friendly and low temperature resistant solid-state supercapacitors, which is conducive to the practical application under harsh environments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhu S, Ni JF, Li Y (2020) Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res 13:1825–1841

    Article  CAS  Google Scholar 

  2. Zhang HC, Zhang JY, Gao XL, Wen L, Li WX, Zhao DW (2022) Advances in materials and structures of supercapacitors. Ionics 28:515–531

    Article  CAS  Google Scholar 

  3. Wang MT, Zhang JY, Wang YX, Lu YF (2022) Material and structural design of microsupercapacitors. J Solid State Electrochem 26:313–334

    Article  CAS  Google Scholar 

  4. Selvaraj T, Perumal V, Khor SF, Anthony LS, Gopinath SCB, Mohamed NM (2020) The recent development of polysaccharides biomaterials and their performance for supercapacitor applications. Mater Res Bull 126:110839

    Article  CAS  Google Scholar 

  5. Na RQ, Su CW, Su YH, Chen YC, Chen YM, Wang GB, Teng HS (2017) Solvent-free synthesis of an ionic liquid integrated ether-abundant polymer as a solid electrolyte for flexible electric double-layer capacitors. J Mater Chem A 5:19703–19713

    Article  CAS  Google Scholar 

  6. Xia L, Yu LP, Hu D, Chen GZ (2017) Electrolytes for electrochemical energy storage. Mater Chem Front 1:584–618

    Article  CAS  Google Scholar 

  7. Na RQ, Huo GZ, Zhang SL, Huo PF, Du YL, Luan JS, Zhu K, Wang GB (2016) A novel poly(ethylene glycol)–grafted poly(arylene ether ketone) blend micro-porous polymer electrolyte for solid-state electric double layer capacitors formed by incorporating a chitosan-based LiClO4 gel electrolyte. J Mater Chem A 4:584–618

    Article  Google Scholar 

  8. Zhu S, Sheng J, Chen Y, Ni JF, Li Y (2021) Carbon nanotubes for flexible batteries: recent progress and future perspective. Nat Sci Rev 8:158–174

    Article  Google Scholar 

  9. Bo JY, Luo XF, Huang HB, Li L, Lai W, Yu XH (2018) Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J Power Sources 407:105–111

    Article  CAS  Google Scholar 

  10. Zhao F, Shi Y, Pan LJ, Yu GH (2017) Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc Chem Res 50:1734–1743

    Article  CAS  PubMed  Google Scholar 

  11. Zhang JJ, Zhao JH, Yue LP, Wang QF, Chai JC, Liu ZH, Zhou XH, Li H, Guo YG, Cui GL, Chen LQ (2015) Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater 5:1501082

    Article  Google Scholar 

  12. Tang QQ, Chen MM, Wang GC, Bao H, Saha P (2015) A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. J Power Sources 284:400–408

    Article  CAS  Google Scholar 

  13. Francesco F, Merinov BV, Goddard WA, Kozinsky B (2018) Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance. Phys Chem Chem Phys 20:26098–26104

    Article  Google Scholar 

  14. Jyothibasu JP, Wang RH, Tien YC, Kuo CC, Lee RH (2022) Lignin-derived quinone redox moieties for bio-based supercapacitors. Polymers 14:3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park JH, Rana HH, Lee JY, Park HS (2019) Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J Mater Chem A 7:16962–16968

    Article  CAS  Google Scholar 

  16. Mondal AK, Xu DZ, Wu S, Zou QX, Huang F, Ni YH (2022) Design of Fe3+-rich, high-conductivity lignin hydrogels for supercapacitor and sensor applications. Biomacromolecules 23:766–778

    Article  CAS  PubMed  Google Scholar 

  17. Liu T, Ren XL, Zhang JM, Liu J, Ou RX, Guo CG, Yu XY, Wang QW, Liu ZZ (2020) Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors. J Power Sources 449:227532

    Article  CAS  Google Scholar 

  18. Rong QF, Lei WW, Huang J, Liu MJ (2018) Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 8:1801967

    Article  Google Scholar 

  19. Wang XD, Wang S, Yong ZP, Liu G, Cui YH, Liang D, Wang D, Liu FX, Wang Z (2022) All-in-one flexible supercapacitor based on hydrogen bonds cross-linked organic gel electrolyte with anti-freezing and anti-pressure properties. J Alloys Compd 902:163658

    Article  CAS  Google Scholar 

  20. Li J, Yu PF, Zhang ST, Wen ZL, Wen YH, Zhou WY, Dong XM, Liu YL, Liang YR (2021) Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. J Colloid Interface Sci 600:586–593

  21. Hou P, Gao CX, Wang J, Zhang JZ, Liu Y, Gu JY, Huo PF (2023) A semi-transparent polyurethane/porous wood composite gel polymer electrolyte for solid-state supercapacitor with high energy density and cycling stability. Chem Eng J 454:139954

    Article  CAS  Google Scholar 

  22. Zhang LM, You TT, Zhou T, Zhou X, Xu F (2016) Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultrahigh performance supercapacitors. ACS Appl Mater Interfaces 8:13918–13925

    Article  CAS  PubMed  Google Scholar 

  23. Vasylieva N, Barnych B, Meiller A, Maucler C, Pollegioni L, Lin JS, Barbier D, Marinesco S (2011) Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens Bioelectron 26:3993–4000

  24. Zhang HJ, Sun TL, Zhang AK, Ikura Y, Nakajima T, Nonoyama T, Kurokawa T, Ito O, Ishitobi H, Gong JP (2016) Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv Mater 28:4884–4890

    Article  CAS  PubMed  Google Scholar 

  25. Dai L, Ma MS, Xu JK, Si CL, Ni YH (2020) All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem Mater 32:4324–4330

    Article  CAS  Google Scholar 

  26. Chen J, Chen XY, Zhu QJ, Chen FL, Zhao XY, Ao Q (2013) Determination of the domain structure of the 7S and 11S globulins from soy proteins by XRD and FTIR. J Sci Food Agri 93:1687–1691

    Article  CAS  Google Scholar 

  27. Tõnurist K, Thomberg T, Jänes A, Romann T, Sammelselg V, Lust E (2013) Influence of separator properties on electrochemical performance of electrical double-layer capacitors. J Electroanalytic Chem 689:8–20

    Article  Google Scholar 

  28. Tu QM, Fan LQ, Pan F, Huang JL, Gu Y, Lin JM, Huang ML, Huang YF, Wu JH (2018) Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochimica Acta 268:562–568

    Article  CAS  Google Scholar 

  29. Yang X, Zhang L, Zhang L, Zhang TF, Huang Y (2014) A high-performance all-solid-state supercapacitor with graphene-doped carbon material electrodes and a graphene oxide-doped ion gel electrolyte. Carbon 72:381–386

    Article  CAS  Google Scholar 

  30. Sun XZ, Zhang X, Huang B, Yan-Wei MA (2014) Effects of separator on the electrochemical performance of electrical double-layer capacitor and hybrid battery-supercapacitor. Acta Physico-Chimica Sinica 30:485–491

    Article  CAS  Google Scholar 

  31. Pandey GP, Hashmi SA (2013) Performance of solid-state supercapacitors with ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate based gel polymer electrolyte and modified MWCNT electrodes. Electrochimica Acta 105:333–341

    Article  CAS  Google Scholar 

  32. Cao LJ, Yang MY, Wu D, Lyu F, Sun ZF, Zhong XW, Pan H, Liu HT, Lu ZG (2017) Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. Chem Commun 53:1615–1618

    Article  CAS  Google Scholar 

  33. Karaman B, Bozkurt A (2018) Enhanced performance of supercapacitor based on boric acid doped PVA-H2SO4 gel polymer electrolyte system. Int J Hydrogen Energy 43:6229–6237

    Article  CAS  Google Scholar 

  34. Xu YX, Lin ZY, Huang XQ, Liu Y, Huang Y, Duan XF (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. Acs Nano 7:4042–4049

    Article  CAS  PubMed  Google Scholar 

  35. Alexandre SA, Silva GG, Santamaría R, Trigueiro J, Lavall RL (2019) A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. Electrochimica Acta 299:789–799

    Article  CAS  Google Scholar 

  36. He NF, Yoo S, Meng JJ, Yildiz O, Bradford PD, Park S, Gao W (2017) Engineering biorefinery residues from loblolly pine for supercapacitor applications. Carbon 120:304–312

    Article  CAS  Google Scholar 

  37. Huo PF, Liu Y, Na RQ, Zhang XR, Zhang SL, Wang GB (2016) Quaternary ammonium functionalized poly(arylene ether sulfone)/poly(vinylpyrrolidone) composite membranes for electrical double layer capacitors with activated carbon electrodes. J Membrane Sci 505:148–156

    Article  CAS  Google Scholar 

  38. Farah N, Ng HM, Numan A, Liew CW, Latip NA, Ramesh K, Ramesh S (2019) Solid polymer electrolytes based on poly(vinyl alcohol) incorporated with sodium salt and ionic liquid for electrical double layer capacitor. Mater Sci Eng B 251:114468

  39. Yadav N, Yadav N, Hashmi SA (2021) High-energy-density carbon supercapacitors incorporating a plastic-crystal-based nonaqueous redox-active gel polymer electrolyte. ACS Appl Energy Mater 4:6635–6649

    Article  CAS  Google Scholar 

  40. Hu XY, Fan LD, Qin G, Shen ZS, Chen J, Wang MX, Yang J, Chen Q (2019) Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J Power Sources 414:201–209

    Article  CAS  Google Scholar 

  41. Zhong M, Tang QF, Zhu YW, Chen XY, Zhang ZJ (2020) An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. J Power Sources 452:227847

    Article  CAS  Google Scholar 

  42. Wang ZK, Pan QM (2017) An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks. Adv Func Mater 27:1700690

    Article  Google Scholar 

  43. Tao F, Qin LM, Wang ZK, Pan QM (2017) Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl Mater Interfaces 9:15541–15548

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Gao CX, Hou P, Liu Y, Zhao JN, Huo PF (2022) All-bio-based, adhesive and low-temperature resistant hydrogel electrolytes for flexible supercapacitors. Chem Eng J 455:140952

    Article  Google Scholar 

  45. Jiao Q, Cao LL, Zhao ZJ, Zhang H, Li JJ, Wei YP (2021) Zwitterionic hydrogel with high transparency, ultrastretchability, and remarkable freezing resistance for wearable strain sensors. Biomacromolecules 22:1220–1230

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Undergraduate Training Programs for innovations (grant number 202210225055), the National Natural Science Foundation of China (grant numbers 51603032), and the Natural Science Foundation of Heilongjiang Province of China (grant number LH2023E006).

Author information

Authors and Affiliations

Authors

Contributions

Yuting Duan and Jiadong Long contributed equally to this work: writing-original draft, investigation, methodology, and visualization. Yanhang Li: investigation and methodology. Xin Tian: validation and formal analysis. Jiaqi Li: formal analysis and software. Zezhong Fang: investigation. Jian Wang: visualization and supervision. Pengfei Huo: conceptualization, review, editing, funding acquisition, and supervision.

Corresponding authors

Correspondence to Jian Wang or Pengfei Huo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Long, J., Li, Y. et al. Lignin/soy protein isolate-based hydrogel polymer electrolytes for flexible solid-state supercapacitors with low temperature resistance. J Solid State Electrochem (2023). https://doi.org/10.1007/s10008-023-05726-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-023-05726-0

Keywords

Navigation