Skip to main content
Log in

Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The growth of lithium dendrite in solid electrolytes has become a major obstacle to the development of solid-state lithium batteries. Lithium dendrite can cause problems such as reduced Coulombic efficiency and shortened lifespan of the battery, and may even cause short circuits that lead to battery failure. The phase field method is used to establish a coupled electro-thermo-mechanical model to study the growth of lithium dendrite, and the plastic behavior of lithium dendrite is also considered. Based on the theory of heat transfer models, the influence of temperature changes on the morphology of lithium dendrite and von Mises stress are analyzed. Using the theory of plastic work, the influence of temperature changes and external pressure changes on the plastic strain of lithium dendrite are analyzed. The results show that the inhibition effect on lithium dendrite is more significant with increasing external pressure and temperature values, and von Mises stress also increases. Lithium dendrite may fracture due to excessive von Mises stress and form dead lithium. The equivalent plastic strain of lithium dendrite increases with the increase of temperature and external pressure values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang S, Shen Z, Lu Y (2021) Research progress of thermal runaway and safety for lithium metal batteries. Acta Phys Chim Sin 37(1):2008065

    Google Scholar 

  2. Wang P, Qu W, Song WL et al (2019) Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Funct Mater 33(20):1–29

    Google Scholar 

  3. Arguello ME, Labanda NA, Calo V et al (2022) Dendrite formation in rechargeable lithium-metal batteries: phase-field modeling using open-source finite element library. J Energy Storage 53:104892

    Article  Google Scholar 

  4. Wen J, Yu Y, Chen C (2012) A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater Express 2(3):197–212

    Article  CAS  Google Scholar 

  5. Liu Y, Sun J, Hu X et al (2022) Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy 94:106883

    Article  CAS  Google Scholar 

  6. Chen KH, Wood KN, Kazyak E et al (2017) Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J Mater Chem A 5(23):11671–11681

    Article  CAS  Google Scholar 

  7. Kushima A, So KP, Su C et al (2017) Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32:271–279

    Article  CAS  Google Scholar 

  8. Bai P, Li J, Brushett FR et al (2016) Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci 9(10):3221–3229

    Article  CAS  Google Scholar 

  9. Pei A, Zheng G, Shi F et al (2017) Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett 17(2):1132–1139

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Zhang G, Chen B et al (2022) Understanding the separator pore size inhibition effect on lithium dendrite via phase-field simulations. Chin Chem Lett 33(6):3287–3290

    Article  CAS  Google Scholar 

  11. Crowther O, West AC (2008) Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc 155(11):A806

    Article  CAS  Google Scholar 

  12. Bates JB, Dudney NJ, Neudecker B et al (2000) Thin-film lithium and lithium-ion batteries. Solid State Ion 135(1–4):33–45

    Article  CAS  Google Scholar 

  13. Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89(2):206–218

    Article  CAS  Google Scholar 

  14. Li Y, Sha L, Lv P et al (2022) Influences of separator thickness and surface coating on lithium dendrite growth: a phase-field study. Materials 15(22):7912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dollé M, Sannier L, Beaudoin B et al (2002) Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Ecs Solid State Lett 5(12):A286

    Article  Google Scholar 

  16. Wang K, Pei P, Ma Z et al (2015) Dendrite growth in the recharging process of zinc–air batteries. J Mater Chem 3(45):22648–22655

    Article  CAS  Google Scholar 

  17. Léger C, Elezgaray J, Argoul F (1998) Dynamical characterization of one-dimensional stationary growth regimes in diffusion-limited electrodeposition processes. Phys Rev E 58(6):7700

    Article  Google Scholar 

  18. Brady RM, Ball RC (1984) Fractal growth of copper electrodeposits. Nature 309(5965):225–229

    Article  CAS  Google Scholar 

  19. Fleury V, Rosso M, Chazalviel JN et al (1991) Experimental aspects of dense morphology in copper electrodeposition. Phys Rev A 44(10):6693

    Article  CAS  PubMed  Google Scholar 

  20. Sand HJS (1901) III On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. London, Edinburgh Dublin Philo. Mag J Sci 1(1):45–79

    Article  CAS  Google Scholar 

  21. Monroe C, Newman J (2003) Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc 150(10):A1377

    Article  CAS  Google Scholar 

  22. Barton JL, Bockris JOM (1962) The electrolytic growth of dendrites from ionic solutions. Proc Math Phys 268(1335):485–505

    CAS  Google Scholar 

  23. Brissot C, Rosso M, Chazalviel JN et al (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81:925–929

    Article  Google Scholar 

  24. Rosso M, Brissot C, Teyssot A et al (2006) Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51(25):5334–5340

    Article  CAS  Google Scholar 

  25. Verma A, Kawakami H, Wada H et al (2021) Microstructure and pressure-driven electrodeposition stability in solid-state batteries. Cell Rep Phys Sci 2(1):100301

    Article  CAS  Google Scholar 

  26. Chen L (2016) Integrating first-principle calculation and phase-field simulation for lithium dendritic growth on the anode of a lithium-ion battery. ASME Int Mech Eng Congr Expo Am Soc Mech Eng 50633:V009T12A076

    Google Scholar 

  27. Zhang R, Shen X, Cheng XB et al (2019) The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Stor Mater 23:556–565

    Google Scholar 

  28. Yamakawa S, Okazaki-Maeda K, Kohyama M et al (2008) Phase-field model for deposition process of platinum nanoparticles on carbon substrate. J Phy: Conf Ser 100(7):072042

    Google Scholar 

  29. Zhou S, Zhuang X, Zhu H et al (2018) Phase field modelling of crack propagation, branching and coalescence in rocks. Theor Appl Fract Mech 96:174–192

    Article  Google Scholar 

  30. Fei F, Choo J (2020) A phase-field method for modeling cracks with frictional contact. Int J Numer Meth Eng 121(4):740–762

    Article  Google Scholar 

  31. Steinke C, Kaliske M (2019) A phase-field crack model based on directional stress decomposition. Comput Mech 63(5):1019–1046

    Article  Google Scholar 

  32. Wise S, Kim J, Lowengrub J (2007) Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J Comput 226(1):414–446

    Google Scholar 

  33. Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Physica D 63(3–4):410–423

    Article  Google Scholar 

  34. Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D 43(1):44–62

    Article  Google Scholar 

  35. Karma A, Rappel WJ (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57(4):4323

    Article  CAS  Google Scholar 

  36. Liang L, Qi Y, Xue F et al (2021) Nonlinear phase-field model for electrode-electrolyte interface evolution. Phys Rev E 86(5):051609

    Article  Google Scholar 

  37. Martin W, Tian Y, Xiao J (2021) Understanding diffusion and electrochemical reduction of Li+ ions in liquid lithium metal batteries. J Electrochem Soc 168(6):060513

    Article  CAS  Google Scholar 

  38. Takahashi M, Watanabe T, Yamamoto K et al (2021) Investigation of the suppression of dendritic lithium growth with a lithium-iodide-containing solid electrolyte. Chem Mater 33(13):4907–4914

    Article  CAS  Google Scholar 

  39. Sun ZT, Zhou J, Wu Y et al (2022) Mapping and modeling physicochemical fields in solid-state batteries. J Phys Chem Lett 13(46):10816–10822

    Article  CAS  PubMed  Google Scholar 

  40. Placke T, Kloepsch R, Dühnen S et al (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21:1939–1964

    Article  CAS  Google Scholar 

  41. Xia S, Wu X, Zhang Z et al (2019) Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5(4):753–785

    Article  CAS  Google Scholar 

  42. Wu Z, Xie Z, Yoshida A et al (2019) Utmost limits of various solid electrolytes in all-solid-state lithium batteries: a critical review. Renew Sust Energ Rev 109:367–385

    Article  CAS  Google Scholar 

  43. Cao D, Sun X, Li Q et al (2020) Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3(1):57–94

    Article  Google Scholar 

  44. Wu H, Xu Y, Ren X et al (2019) Polymer-in-“quasi-ionic liquid” electrolytes for high-voltage lithium metal batteries. Adv Energy Mater 9(41):1902108

    Article  CAS  Google Scholar 

  45. Kerman K, Luntz A, Viswanathan V et al (2017) Practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc 164(7):A1731

    Article  CAS  Google Scholar 

  46. Lewis JA, Tippens J, Cortes FJQ et al (2019) Chemo-mechanical challenges in solid-state batteries. Trends Chem 1(9):845–857

    Article  CAS  Google Scholar 

  47. Ke X, Wang Y, Dai L et al (2020) Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: lithium dendrites. Energy Stor Mater 33:309–328

    Google Scholar 

  48. Chen Y, Jiang Y, Chi SS et al (2022) Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. J Power Sources 521:230921

    Article  CAS  Google Scholar 

  49. Zhao B, Ma W, Li B et al (2022) A fast and low-cost interface modification method to achieve high-performance garnet-based solid-state lithium metal batteries. Nano Energy 91:106643

    Article  CAS  Google Scholar 

  50. Deng T, Ji X, Zhao Y et al (2020) (2020) Tuning the anode–electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv Mater 32(23):2000030

    Article  CAS  Google Scholar 

  51. Yan HH, Bie YH, Cui XY et al (2018) A computational investigation of thermal effect on lithium dendrite growth. Energy Convers Manag 161:193–204

    Article  CAS  Google Scholar 

  52. Aryanfar A, Brooks D, Merinov BV et al (2014) Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations. J Phys Chem Lett 5(10):1721–1726

    Article  CAS  PubMed  Google Scholar 

  53. Mayers MZ, Kaminski JW, Miller TF III (2012) Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J Phys Chem C 116(50):26214–26221

    Article  CAS  Google Scholar 

  54. Vishnugopi BS, Hao F, Verma A et al (2020) Double-edged effect of temperature on lithium dendrites. Acs Appl Mater Inter 12(21):23931–23938

    Article  CAS  Google Scholar 

  55. Hwang J, Okada H, Haraguchi R et al (2020) Ionic liquid electrolyte for room to intermediate temperature operating Li metal batteries: dendrite suppression and improved performance. J Power Sources 453:227911

    Article  CAS  Google Scholar 

  56. Love CT, Baturina OA, Swider-Lyons KE (2015) Observation of lithium dendrites at ambient temperature and below. ECS Electrochem Lett 4(2):A24

    Article  CAS  Google Scholar 

  57. Ren Y, Zhou Y, Cao Y (2020) Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling. J Phys Chem C 124(23):12195–12204

    Article  CAS  Google Scholar 

  58. Shi S, Gao J, Liu Y et al (2016) Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin Phys B 25(1):018212

    Article  Google Scholar 

  59. Chen L, Zhang HW, Liang LY et al (2016) Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J Power Sources 300:376–385

    Article  Google Scholar 

  60. Shen X, Zhang R, Shi P et al (2021) How does external pressure shape Li dendrites in Li metal batteries? Adv Energy Mater 11(10):2003416

    Article  CAS  Google Scholar 

  61. Cahn JW, Allen SM (1977) A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. J Phys 38(C7):C7–51–C7–54

    Google Scholar 

  62. Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta metall 27(6):1085–1095

    Article  CAS  Google Scholar 

  63. Wu W, Xiao X, Huang X (2012) The effect of battery design parameters on heat generation and utilization in a Li-ion cell. Electrochim Acta 83:227–240

    Article  CAS  Google Scholar 

  64. Doyle M, Newman J, Gozdz AS et al (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143(6):1890

    Article  Google Scholar 

  65. Fang J, Wu C, Rabczuk T et al (2019) Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies. Theor Appl Fract Mech 103:102252

    Article  Google Scholar 

  66. LePage WS, Chen Y, Kazyak E et al (2019) Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J Electrochem Soc 166(2):A89–A97

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Sichuan Science and Technology Program (Grant Nos. 2023NSFSC0394 and 2023NSFSC1988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjiang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, Z. Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes. J Solid State Electrochem 27, 2607–2618 (2023). https://doi.org/10.1007/s10008-023-05560-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05560-4

Keywords

Navigation