Skip to main content

Advertisement

Log in

Advanced separator engineering strategies for reversible electrochemical zinc storage

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Zinc ion batteries are favored by researchers because of their intrinsic safety, low cost, and high theoretical energy density. The serious dendrite growth of Zn anode during electrochemical deposition inhibits the development of zinc ion batteries currently. Many research works have been carried out to modify the zinc metal anode surface and aqueous electrolyte. Significantly, as the carrier of electrolyte and the bridge of ions, the separators show promising potential of inhibiting dendrites growth by regulating the ions migration and the electric field of the electrolyte-anode interface. However, a technical review about the separators of zinc ion batteries is still rare. In this review, the basic requirements of separators and the latest development of modification materials and mechanisms are summarized. Finally, the perspectives for further developments on the separators of zinc ion batteries are outlined. This review could offer useful information for the further development of separators for zinc ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen Y et al (2023) Single-source realization of Na-doped and carbon-coated LiMnPO4 nanocomposite for enhanced performance of Li-ion batteries. J Solid State Electrochem. https://doi.org/10.1007/s10008-022-05354-0

    Article  Google Scholar 

  2. Zeng Y et al (2020) Scenario-set-based economic dispatch of power system with wind power and energy storage system. IEEE Access 8:109105–109119

    Article  Google Scholar 

  3. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  4. Shumei D et al (2022) Research progress and prospect in element doping of lithium-rich layered oxides as cathode materials for lithium-ion batteries. J Solid State Electrochem 27:1–23

    Article  Google Scholar 

  5. Lu L et al (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  6. Lin D et al (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206

    Article  CAS  PubMed  Google Scholar 

  7. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  PubMed  Google Scholar 

  8. Li Y et al (2022) Estimation of critical metal stock and recycling potential in China’s automobile industry. Front Environ Sci 10:937541

    Article  Google Scholar 

  9. Zhao Q et al (2020) Recovery and regeneration of spent lithium-Ion batteries from new energy vehicles. Front Chem 8:807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang Y, Yao Y (2022) Designing modern aqueous batteries. Nat Rev Mater. https://doi.org/10.1038/s41578-022-00511-3

    Article  Google Scholar 

  11. Feng Z et al (2022) Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. J Power Sources 536:231489

    Article  CAS  Google Scholar 

  12. Jiang H et al (2022) Quench-tailored Al-doped V2O5 nanomaterials for efficient aqueous zinc-ion batteries. J Energy Chem 70:52–58

    Article  CAS  Google Scholar 

  13. Feng Z et al (2022) Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries. Chem Eng J 433:133795

    Article  CAS  Google Scholar 

  14. Pan Z et al (2020) Flexible quasi-solid-state aqueous Zn-based batteries: rational electrode designs for high-performance and mechanical flexibility. Mater Today Energy 18:100523

    Article  CAS  Google Scholar 

  15. Zhao C et al (2021) The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: recent progress and future perspectives. Sustain Energy Fuels 5:332–350

    Article  CAS  Google Scholar 

  16. Jia H et al (2020) Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70:104523

    Article  CAS  Google Scholar 

  17. Shin J et al (2020) Aqueous zinc ion batteries: focus on zinc metal anodes. Chem Sci 11:2028–2044

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu F et al (2022) Achieving highly reversible zinc anodes via N, N-dimethylacetamide enabled Zn-ion solvation regulation. Small 18:2202363

    Article  CAS  Google Scholar 

  19. Yi Z et al (2020) Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater 11:2003065

    Article  Google Scholar 

  20. Xu D et al (2022) Structural regulation strategies towards high performance organic materials for next generation aqueous Zn-based batteries. ChemPhysMater 1:86–101

    Article  Google Scholar 

  21. Wang F et al (2020) Nickel@Nickel oxide dendritic architectures with boosted electrochemical reactivity for aqueous nickel–zinc batteries. 7:4572–4577

  22. Zheng D et al (2022) Ca-ion modified vanadium oxide nanoribbons with enhanced Zn-ion storage capability. J Mater Chem A 10:5614–5619

    Article  CAS  Google Scholar 

  23. Hao J et al (2020) Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv Funct Mater 30:2001263

    Article  CAS  Google Scholar 

  24. He P, Huang J (2021) Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett 6:1990–1995

    Article  CAS  Google Scholar 

  25. Cao Z et al (2021) Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater 36:132–138

    Article  Google Scholar 

  26. Zhang N et al (2021) Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew Chem Int Ed 60:2861–2865

    Article  CAS  Google Scholar 

  27. Xu X et al (2021) Ultra-fast and scalable saline immersion strategy enabling uniform Zn nucleation and deposition for high-performance Zn-ion batteries. Small 17:2101901

    Article  CAS  Google Scholar 

  28. Wang L et al (2021) Sn alloying to inhibit hdrogen evolution of zn metal anode in rechargeable aqueous batteries. Adv Funct Mater 32:2108533

    Article  Google Scholar 

  29. Li C et al (2020) Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv Mater 32:2003425

    Article  CAS  Google Scholar 

  30. Zhang X et al (2022) Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat 4:12306

    Article  Google Scholar 

  31. Hashmi MM et al (2022) Recent progress in separators for rechargeable batteries. Nanomater Innovative Energy 24:417–498

    Google Scholar 

  32. An Y et al (2022) MXenes for advanced separator in rechargeable batteries. Mater Today 57:146–179

    Article  CAS  Google Scholar 

  33. Lee H et al (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886

    Article  CAS  Google Scholar 

  34. Nestler T et al (2014) Separators-technology review: ceramic based separators for secondary batteries. Conf Proc 1597:155

    CAS  Google Scholar 

  35. Kim S et al (2022) Recycling respirator masks to a high-value product: from COVID-19 prevention to highly efficient battery separator. Chem Eng J 430:132723

    Article  CAS  PubMed  Google Scholar 

  36. Xie Y et al (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30

    Article  CAS  Google Scholar 

  37. Cao J et al (2020) A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J Mater Chem A 8:9331–9344

    Article  CAS  Google Scholar 

  38. Cao J et al (2021) Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 89:106322

    Article  CAS  Google Scholar 

  39. Wang Z et al (2021) Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nanomicro Lett 13:73

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu L et al (2021) A g-C3N4-coated paper-based separator for sodium metal batteries. J Solid State Electrochem 25:1373–1381

    Article  CAS  Google Scholar 

  41. Zhang Y et al (2021) Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett 21:10446–10452

    Article  CAS  PubMed  Google Scholar 

  42. Sheng J et al (2017) Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24:4103–4122

    Article  CAS  Google Scholar 

  43. Zhang Y et al (2022) Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries. Cell Rep Phys Sci 3:100824

    Article  CAS  Google Scholar 

  44. Harlan L et al (2001) Advanced membranes for alkaline primary and rechargeable alkaline cells with zinc anodes. J Power Sources 96:128–132

    Article  Google Scholar 

  45. Javadi O et al (2021) PVDF/PU blend membrane separator for lithium-ion batteries via non-solvent-induced phase separation (NIPS). J Solid State Electrochem 25:2385–2394

    Article  CAS  Google Scholar 

  46. Ni Q et al (2022) Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv Mater 34:2108206

    Article  CAS  Google Scholar 

  47. Ghosh M et al (2019) Dendrite growth suppression by Zn2+ integrated Nafion lonomer membranes: beyond porous separators toward aqueous Zn/V2O5 batteries with extended cycle life. Energy Technol 7:2194–4288

    Article  Google Scholar 

  48. Hou Z et al (2021) Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nat Commun 12:3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang Y et al (2022) Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv Funct Mater 32:2112936

    Article  CAS  Google Scholar 

  50. Gan H et al (2023) Uniform Zn2+ distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes. Energy Storage Mater 55:264–271

    Article  Google Scholar 

  51. Yang Y et al (2022) Regulating dendrite-free Zn deposition by a self-assembled OH- terminated SiO2 nanosphere layer toward a Zn metal anode. ACS Appl Mater Interfaces 14:37759–37770

    Article  CAS  PubMed  Google Scholar 

  52. Su Y et al (2022) Printing-scalable Ti3C2Tx MXene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv Funct Mater 32:2204306

    Article  CAS  Google Scholar 

  53. An Y et al (2022) Highly reversible Zn metal anodes enabled by freestanding, lightweight, and zincophilic MXene/nanoporous oxide heterostructure engineered separator for flexible Zn-MnO2 batteries. ACS Nano 16:6755–6770

    Article  CAS  PubMed  Google Scholar 

  54. Wu L et al (2021) Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. J Mater Chem A 9:27408–27414

    Article  CAS  Google Scholar 

  55. Cao J et al (2021) Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv Energy Mater 11:2101299

    Article  CAS  Google Scholar 

  56. Zhang X et al (2022) An ion-seving Janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. Adv Mater 34:2205175

    Article  CAS  Google Scholar 

  57. Yao L et al (2022) Ultra-Stable Zn anode enabled by fiber-directed ion migration using mass-producible separator. Adv Funct Mater 33:2209301

    Article  Google Scholar 

  58. Yang X et al (2022) Chitosan modified filter paper separators with specific ion adsorption to inhibit side reactions and induce uniform Zn deposition for aqueous Zn batteries. Chem Eng J 450:137902

    Article  CAS  Google Scholar 

  59. Liu T et al (2021) Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater 45:1074–1083

    Article  CAS  Google Scholar 

  60. Peng C et al (2022) Flexible zincophilic polypyrrole paper interlayers for stable Zn metal anodes: Higher surface flatness promises better reversibility. Nano Energy 98:107329

    Article  CAS  Google Scholar 

  61. Sathishkumar TP et al (2014) Glass fiber-reinforced polymer composites – a review. J Reinf Plast Compos 33:1258–1275

    Article  CAS  Google Scholar 

  62. Tsai YI et al (2009) Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Compos Sci Technol 69:432–437

    Article  CAS  Google Scholar 

  63. Wasalathilake KC et al (2020) Recent advances in graphene based materials as anode materials in sodium-ion batteries. J Energy Chem 42:91–107

    Article  Google Scholar 

  64. Likitaporn C et al (2022) High electrolyte uptake of MXene integrated membrane separators for Zn-ion batteries. Sci Rep 12:19915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li G et al (2018) Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat Energy 3:1076–1083

    Article  CAS  Google Scholar 

  66. Yin Y et al (2020) Dendrite-free zinc deposition induced by Tin-modified multifunctional 3D host for stable zinc-based fow battery. Adv Mater 32:1906803

    Article  CAS  Google Scholar 

  67. Zhang G et al (2021) 3D-Printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv Energy Mater 11:2003927

    Article  CAS  Google Scholar 

  68. Tian Y et al (2019) Flexible and free-standing Ti3C2TX MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13:11676–11685

    Article  CAS  PubMed  Google Scholar 

  69. Yang X et al (2022) Mosaic nanocrystalline graphene skin empowers highly reversible Zn metal anodes. Adv Sci. https://doi.org/10.1002/advs.202206077

    Article  Google Scholar 

  70. Prodromakis T, Papavassiliou C (2009) Engineering the Maxwell-Wagner polarization effect. Appl Surf Sci 255:6989–6994

    Article  CAS  Google Scholar 

  71. Yang J et al (2022) Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nanomicro Lett 14:42

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li C et al (2020) Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ Mater 3:146–159

    Article  CAS  Google Scholar 

  73. Liu X et al (2022) A porous membrane electrolyte enabled by poly(biphenyl piperidinium triphenylmethane) for dendrite-free zinc anode with enhanced cycling life. Chem Eng J 437:135409

    Article  CAS  Google Scholar 

  74. Jiao S et al (2022) Ion sieve: tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 16:1013–1024

    Article  CAS  PubMed  Google Scholar 

  75. Lavoine N et al (2012) Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  PubMed  Google Scholar 

  76. Fu J et al (2022) A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Mater 48:191–197

    Article  Google Scholar 

  77. Zhou W et al (2022) Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater 44:57–65

    Article  Google Scholar 

  78. Azizi S et al (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–616

    Article  Google Scholar 

  79. Qin Y et al (2020) Advanced filter membrane separator for aqueous zinc-ion batteries. Small 16:2003106

    Article  CAS  Google Scholar 

  80. Ge X et al (2022) Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries. Adv Funct Mater 32:2200429

    Article  CAS  Google Scholar 

  81. Zhou M et al (2021) Surface-preferred crystal plane for a stable and reversible zinc anode. Adv Mater 33:2100187

    Article  CAS  Google Scholar 

  82. Zheng J et al (2019) Reversible epitaxial electrodeposition of metals in battery anodes. Science 366:645–648

    Article  CAS  PubMed  Google Scholar 

  83. Li X et al (2022) Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 16:813–822

    Article  PubMed  Google Scholar 

  84. Zhang K et al (2020) Electrodeposition accelerates ametal-based batteries. Joule 4:10–11

    CAS  Google Scholar 

  85. Shayapat J et al (2015) Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim Acta 170:110–121

    Article  CAS  Google Scholar 

  86. Liu Y et al (2022) A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat. https://doi.org/10.1002/inf2.12374

    Article  Google Scholar 

  87. Fang Y et al (2021) Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv Funct Mater 32:2109671

    Article  Google Scholar 

  88. Li C et al (2019) Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat Commun 10:1363

    Article  PubMed  PubMed Central  Google Scholar 

  89. Barbosa JC et al (2018) Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery sparators. Membranes 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bicy K et al (2022) Lithium-ion battery separators based on electrospun PVDF: A review. Surf Interfaces 31:101977

    Article  Google Scholar 

  91. Sahu A et al (2009) Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview. Bull Mater Sci 32:285–294

    Article  CAS  Google Scholar 

  92. Thangarasu S, Oh TH (2021) Progress in poly(phenylene oxide) based cation exchange membranes for fuel cells and redox flow batteries applications. Int J Hydrogen Energy 46:38381–38415

    Article  CAS  Google Scholar 

  93. Wu B et al (2021) A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J Mater Chem A 9:4734–4743

    Article  CAS  Google Scholar 

  94. Cui Y et al (2020) An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew Chem Int Ed 59:16594–16601

    Article  CAS  Google Scholar 

  95. Saisangtham S et al (2022) Polyacrylonitrile/bio-based polyurethane electrospun fiber mats as advanced separators for high-performance Zn-ion batteries. Express Polym Lett 16:827–845

    Article  CAS  Google Scholar 

  96. Luo Y et al (2021) Directing the preferred crystal orientation by a cellulose acetate/graphene oxide composite separator for dendrite-free Zn-metal anodes. ACS Appl Energy Mater 4:14599–14607

    Article  CAS  Google Scholar 

  97. Li L et al (2022) PBC@cellulose-filter paper separator design with efficient ion transport properties toward stabilized zinc-ion battery. Electrochim Acta 430:141129

    Article  CAS  Google Scholar 

  98. Lee BS et al (2018) Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl Mater Interfaces 10:38928–38935

    Article  CAS  PubMed  Google Scholar 

  99. Zhang F et al (2022) Hierarchical porous separator with excellent isotropic modulus enabling homogeneous Zn2+ flux for stable aqueous Zn battery. Sci China Mater. https://doi.org/10.1007/s40843-022-2239-8

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hu W et al (2022) Deposition behavior regulated by an SPSF@PMIA nanofiber separator for high-performance zinc ion batteries. J Mater Chem A 10:24761–24771

    Article  CAS  Google Scholar 

  101. Cao P et al (2022) Stabilizing zinc anodes by a cotton towel separator for aqueous zinc-ion batteries. ACS Sustainable Chem Eng 10:8350–8359

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Project of China (2022YFE0113800), National Natural Science Foundation of China (51972286, 22005268, 21905246), and Natural Science Foundation of Zhejiang Provincial Natural Science Foundation (LR19E020003, LQ20B010011 and LZ21E020003); X.C. and F.W. also thank the support from Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2020R01002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiehong Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Feng, J., Chen, Y. et al. Advanced separator engineering strategies for reversible electrochemical zinc storage. J Solid State Electrochem 27, 1329–1344 (2023). https://doi.org/10.1007/s10008-023-05454-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05454-5

Keywords

Navigation