Skip to main content

Advertisement

Log in

Enhanced energy density of asymmetric supercapacitors via optimizing negative electrode material and mass ratio of negative/positive electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An asymmetric supercapacitor based on manganese dioxide/Au/nickel foam (MANF) electrode as positive electrode and graphene or commercial activated carbons (AC) as negative electrode was fabricated. The effect of different negative electrode materials and mass ratios of negative/positive electrodes on the electrochemical properties of the asymmetric supercapacitor was carefully investigated. The results suggest that the mass ratio of negative/positive electrode has a significant impact on the specific capacitance of the asymmetric supercapacitor. Especially, it is found that the optimal mass ratio of the negative/positive electrode is slightly lower than that calculated according to charge balance. On the other hand, the asymmetric supercapacitor with commercialized AC as negative electrode possesses higher specific capacitance and better rate capability than that of the asymmetric supercapacitor with graphene as negative electrode. The negative material has slight impact on the cycle stability of the asymmetric supercapacitor. In addition, the optimized asymmetric supercapacitor with MANF composite as positive electrode and AC as negative electrode can obtain an energy density as high as 65.9 Wh kg−1 at a power density of 180 W kg−1 and a cell voltage of 1.8 V in the neutral Na2SO4 aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer/Plenum, New York

    Book  Google Scholar 

  2. Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  3. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  4. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  6. Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Adv Mater 22:E235–E241

    Article  CAS  Google Scholar 

  7. Lu W, Qu LT, Henry K, Dai LM (2009) J Power Sources 189:1270–1277

    Article  CAS  Google Scholar 

  8. Chen PC, Shen GZ, Shi Y, Chen HT, Zhou CW (2010) ACS Nano 4:4403–4411

    Article  CAS  Google Scholar 

  9. Wang YG, Xia YY (2005) Electrochem Commun 7:1138–1142

    Article  CAS  Google Scholar 

  10. Wang Q, Wen ZH, Li JH (2006) Adv Funct Mater 16:2141–2146

    Article  CAS  Google Scholar 

  11. Wang DW, Fang HT, Li F, Chen ZG, Zhong QS, Liu GQ, Cheng HM (2008) Adv Funct Mater 18:3787–3793

    Article  CAS  Google Scholar 

  12. Lin YP, Wu NL (2011) J Power Sources 196:851–854

    Article  CAS  Google Scholar 

  13. Wang HL, Gao QM, Hu J (2010) J Power Sources 195:3017–3024

    Article  CAS  Google Scholar 

  14. Park JH, Kim SW, Park OO, Ko JM (2006) Appl Phys A 82:593–597

    Article  CAS  Google Scholar 

  15. Lang JW, Kong LB, Liu M, Luo YC, Kang L (2010) J Solid State Electrochem 14:1533–1539

    Article  CAS  Google Scholar 

  16. Wang HL, Liang YY, Mirfakhrai T, Chen Z, Casalongue HS, Dai HJ (2011) Nano Res 4:729–736

    Article  CAS  Google Scholar 

  17. Demarconnay L, Raymundo-Pinero E, Béguin F (2011) J Power Sources 196:580–586

    Article  CAS  Google Scholar 

  18. Gao PC, Lu AH, Li WC (2011) J Power Sources 196:4095–4101

    Article  CAS  Google Scholar 

  19. Tang W, Hou YY, Wang XJ, Bai Y, Zhu YS, Sun H, Yue YB, Wu YP, Zhu K, Holze R (2012) J Power Sources 197:330–333

    Article  CAS  Google Scholar 

  20. Wu ZS, Ren WC, Wang DW, Li F, Liu BH, Cheng HM (2010) ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  21. Jiang H, Li CZ, Sun T, Ma J (2012) Nanoscale 4:807–812

    Article  CAS  Google Scholar 

  22. Tomkoa T, Rajagopalanb R, Lanaganb M, Foley HC (2011) J Power Sources 196:2380–2386

    Article  Google Scholar 

  23. Lei ZB, Zhang JT, Zhao XS (2012) J Mater Chem 22:153–160

    Article  CAS  Google Scholar 

  24. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  25. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  26. Jones DJ, Wortham E, Roziere J, Favier F, Pascal JL, Monconduit L (2004) J Phys Chem Solids 65:235–239

    Article  CAS  Google Scholar 

  27. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444–450

    Article  CAS  Google Scholar 

  28. Chin SF, Pang SC, Anderson MA (2002) J Electrochem Soc 149:A379–A384

    Article  CAS  Google Scholar 

  29. Shinomiya T, Gupta V, Miura N (2006) Electrochim Acta 51:4412–4419

    Article  CAS  Google Scholar 

  30. Broughton JN, Brett MJ (2005) Electrochim Acta 50:4814–4819

    Article  CAS  Google Scholar 

  31. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2010) J Phys Chem C 114:658–663

    Article  CAS  Google Scholar 

  32. Xu MW, Kong LB, Zhou WJ, Li HL (2007) J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  33. Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW (2007) Nano Lett 7:281–286

    Article  CAS  Google Scholar 

  34. Huang HJ, Wang X (2011) Nanoscale 3:3185–3191

    Article  CAS  Google Scholar 

  35. Lee SW, Kim JY, Chen S, Hammond PT, Shao-Horn Y (2010) ACS Nano 4:3889–3896

    Article  CAS  Google Scholar 

  36. Babakhani B, Ivey DG (2010) Electrochim Acta 55:4014–4024

    Article  CAS  Google Scholar 

  37. Peng C, Zhang SW, Zhou XH, Chen GZ (2010) Energy Environ Sci 3:1499–1502

    Article  Google Scholar 

  38. Xu CL, Zhao YQ, Yang GW, Li FS, Li HL (2009) Chem Commun 48:7575–7577

    Google Scholar 

  39. Wang YL, Zhao YQ, Xu CL (2012) J Solid State Electrochem 16:829–834

    Article  CAS  Google Scholar 

  40. Zhao YQ, Zhao DD, Tang PY, Wang YM, Xu CL, Li HL (2012) Mater Lett 76:127–130

    Article  CAS  Google Scholar 

  41. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  42. Julien CM, Massot M, Poinsignon C (2004) Spectrochim Acta A 60:689–700

    Article  CAS  Google Scholar 

  43. Demarconnay L, Raymundo PE, Beguin F (2010) Electrochem Commun 12:1275–1278

    Article  CAS  Google Scholar 

  44. Khomenko V, Raymundo PE, Beguin F (2006) J Power Sources 153:183–190

    Article  CAS  Google Scholar 

  45. Yuan LY, Lu XH, Xiao X, Zhai T, Dai JJ, Zhang FC, Hu B, Wang X, Gong L, Chen J, Hu CJ, Tong YX, Zhou J, Wang ZL (2012) ACS Nano 6:656–661

    Article  CAS  Google Scholar 

  46. Qu QQ, Zhang P, Wang B, Chen YH, Tian S, Wu YP, Holze JR (2009) J Phys Chem C 113:14020–14027

    Article  CAS  Google Scholar 

  47. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  48. Wang KP, Teng HS (2007) J Electrochem Soc 154:A993–A998

    Article  CAS  Google Scholar 

  49. Huang CW, Teng HS (2008) J Electrochem Soc 155:A739–A744

    Article  CAS  Google Scholar 

  50. Zang JF, Bao SJ, Li CM, Bian HJ, Cui XQ, Bao QL, Sun CQ, Guo J, Lian KR (2008) J Phys Chem C 112:14843–14847

    Article  CAS  Google Scholar 

  51. Rakhi RB, Cha D, Chen W, Alshareef HN (2011) J Phys Chem C 115:14392–14399

    Article  CAS  Google Scholar 

  52. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Nano Lett 12:2559–2567

    Article  CAS  Google Scholar 

  53. Yan WB, Kim JY, Xing WD, Donavan KC, Ayvazian T, Penner PM (2012) Chem Mater 24:2382–2390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (NSFC no. 20903050), the Fundamental Research Funds for the Central University (Lzujbky-2012-22 and Lzujbky-2012-79), and the Science and Technology Program of Gansu Province of China (1107RJYA004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqing Zhao or Cailing Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 12193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, P., Zhao, Y., Xu, C. et al. Enhanced energy density of asymmetric supercapacitors via optimizing negative electrode material and mass ratio of negative/positive electrodes. J Solid State Electrochem 17, 1701–1710 (2013). https://doi.org/10.1007/s10008-013-2021-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2021-7

Keywords

Navigation