Skip to main content
Log in

Aqueous degradation of 6-APA by hydroxyl radical: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Degradation reactions of micropollutants such as antibiotics with OH radicals are very important in terms of environmental pollution. Therefore, in this study, the degradation kinetic mechanism of 6-aminopenicillanic acid (6-APA) with OH radical was investigated by density functional theory (DFT) methods.

Methods

For the calculations, different functionals such as B3LYP, MPW1PW91, and M06-2X were used with a 6-31 g(d,p) basis set. The aquatic effect on the reaction mechanism was investigated by conductor-like polarizable continuum model (CPCM). For the degradation kinetics in aqueous media, the addition of explicit water molecules was also calculated. Subsequent reaction mechanism for the most probable reaction product was briefly discussed.

Results

Among the functionals used, B3LYP results were consistent with the experimental results. Calculated kinetic parameters indicated that the OH-addition path was more dominant than the H-abstraction paths. With the increase of explicit water molecules in the models, the energy required for the formation of transition state complexes decreased. The overall rate constant is calculated as 2.28 × 1011 M−1 s−1 at 298 K for the titled reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2.

Similar content being viewed by others

Data availability

It will be given if it is necessary.

Code availability

It will be given if it is necessary.

References

  1. Ioannou-Ttofa L, Raj S, Prakash H, Fatta-Kassinos D (2019) Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistant E. coli and ecotoxicity from secondary-treated wastewater effluents. Chem Eng J 355:91–102. https://doi.org/10.1016/j.cej.2018.08.057

    Article  CAS  Google Scholar 

  2. Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B (2019) Veterinary pharmaceutical residues from natural water to tap water: sales, occurrence and fate. J Hazard Mater 361:169–186

    Article  CAS  PubMed  Google Scholar 

  3. Deshpande AD, Baheti KG, Chatterjee NR (2004) Current science association degradation of β-lactam antibiotics.Curr Sci 87:1684–1695. https://www.jstor.org/stable/24109765

  4. Xiao R, Noerpel M, Ling Luk H, Wei Z, Spinney R (2014) Thermodynamic and kinetic study of ibuprofen with hydroxyl radical: a density functional theory approach. Int J Quantum Chem 114:74–83. https://doi.org/10.1002/qua.24518

    Article  CAS  Google Scholar 

  5. Li H, Zhang Y, Wan J, Xiao H, Chen X (2018) Theoretical investigation on the oxidation mechanism of dibutyl phthalate by hydroxyl and sulfate radicals in the gas and aqueous phase. Chem Eng J 339:381–392. https://doi.org/10.1016/j.cej.2017.12.153

    Article  CAS  Google Scholar 

  6. Szabó L, Tóth T, Rácz G, Takács E, Wojnárovits L (2016) •OH and e-aq are yet good candidates for demolishing the β-lactam system of a penicillin eliminating the antimicrobial activity. Radiat Phys Chem 124:84–90. https://doi.org/10.1016/j.radphyschem.2015.10.012

    Article  CAS  Google Scholar 

  7. Arslan-Alaton I, Dogruel S (2004) Pre-treatment of penicillin formulation effluent by advanced oxidation processes. J Hazard Mater 112:105–113. https://doi.org/10.1016/j.jhazmat.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  8. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47:957–995

    Article  CAS  PubMed  Google Scholar 

  9. Wols BA, Hofman-Caris CHM (2012) Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res 46:2815–2827

    Article  CAS  PubMed  Google Scholar 

  10. He X, Mezyk SP, Michael I, Fatta-Kassinos D, Dionysiou DD (2014) Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254nm irradiation. J Hazard Mater 279:375–383. https://doi.org/10.1016/j.jhazmat.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  11. Serna-Galvis EA, Silva-Agredo J, Giraldo AL, Flórez-Acosta OA, Torres-Palma RA (2016) Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes. Sci Total Environ 541:1431–1438. https://doi.org/10.1016/j.scitotenv.2015.10.029

    Article  CAS  PubMed  Google Scholar 

  12. Yabalak E, Döndaş HA, Gizir AM (2017) Subcritical water oxidation of 6-aminopenicillanic acid and cloxacillin using H2O2, K2S2O8, and O2. J Environ Sci Health A Tox Hazard Subst Environ Eng 52:210–220. https://doi.org/10.1080/10934529.2016.1246935

    Article  CAS  PubMed  Google Scholar 

  13. Bansal P, Verma A (2017) Synergistic effect of dual process (photocatalysis and photo-Fenton) for the degradation of Cephalexin using TiO2 immobilized novel clay beads with waste fly ash/foundry sand. J Photochem Photobiol A Chem 342:131–142. https://doi.org/10.1016/j.jphotochem.2017.04.010

    Article  CAS  Google Scholar 

  14. Yabalak E (2018) An approach to apply eco-friendly subcritical water oxidation method in the mineralization of the antibiotic ampicillin. J Environ Chem Eng 6:7132–7137. https://doi.org/10.1016/j.jece.2018.10.010

    Article  CAS  Google Scholar 

  15. Al-Musawi TJ, Kamani H, Bazrafshan E, Panahi AH, Silva MF, Abi G (2019) Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using Box-Behnken response surface methodology. Catal Letters 149:1186–1196. https://doi.org/10.1007/s10562-019-02713-x

    Article  CAS  Google Scholar 

  16. Mirzaei A, Haghighat F, Chen Z, Yerushalmi L (2019) Sonocatalytic removal of ampicillin by Zn(OH)F: effect of operating parameters, toxicological evaluation and by-products identification. J Hazard Mater 375:86–95. https://doi.org/10.1016/j.jhazmat.2019.04.069

    Article  CAS  PubMed  Google Scholar 

  17. Baran W, Adamek E, Jajko M, Sobczak A (2018) Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere 194:381–389. https://doi.org/10.1016/j.chemosphere.2017.11.165

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Miao X, Zhang J, Du J, Xu S, Tang J, Zhang Y (2020) DFT studies on the reaction mechanism and kinetics of dibutyl phthalate initiated by hydroxyl and sulfate radicals: prediction of the most reactive sites. Chemical Engineering Journal 381. https://doi.org/10.1016/j.cej.2019.122680

  19. Sanches-Neto FO, Ramos B, Lastre-Acosta AM, Teixeira ACSC, Carvalho-Silva VH (2021) Aqueous picloram degradation by hydroxyl radicals: unveiling mechanism, kinetics, and ecotoxicity through experimental and theoretical approaches. Chemosphere 278. https://doi.org/10.1016/j.chemosphere.2021.130401

  20. Mishra BK, Chakrabartty AK, Deka RC (2013) Theoretical study on rate constants for the reactions of CF 3CH2NH2 (TFEA) with the hydroxyl radical at 298 K and atmospheric pressure. J Mol Model 19:2189–2195. https://doi.org/10.1007/s00894-013-1762-7

    Article  CAS  PubMed  Google Scholar 

  21. Xu L, Li W, Désesquelles P, Van-Oanh NT, Thomas S, Yang J (2019) A statistical model and DFT study of the fragmentation mechanisms of metronidazole by advanced oxidation processes. J Phys Chem A 123:933–942. https://doi.org/10.1021/acs.jpca.8b10554

    Article  CAS  PubMed  Google Scholar 

  22. Belhacova L, Bibova H, Marikova T, Kuchar M, Zouzelka R, Rathousky J (2021) Removal of ampicillin by heterogeneous photocatalysis: combined experimental and dft study. Nanomaterials 11. https://doi.org/10.3390/nano11081992

  23. Zeng X, Meng Y, Shu S, Guo F (2022) Density functional theory investigation on aqueous degradation mechanism of norfloxacin initiated by hydroxyl radical. Struct Chem 33:1213–1222. https://doi.org/10.1007/s11224-022-01928-w

    Article  CAS  Google Scholar 

  24. Aydogdu S, Hatipoglu A (2023) Theoretical insights into the reaction mechanism and kinetics of ampicillin degradation with hydroxyl radical. J Mol Model 29:63. https://doi.org/10.1007/s00894-023-05462-2

    Article  CAS  PubMed  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta Jr. JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01 Gaussian, Inc., Wallingford

  26. Domingo LR (2016) Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21. https://doi.org/10.3390/molecules21101319

  27. Gulvi NR, Patel P, Maliekal PJ, Badani PM (2021) Effect of substitution on dissociation kinetics of C2H5X, (X = F, Cl, Br and I): a theoretical study. Mol Phys 119. https://doi.org/10.1080/00268976.2020.1807635

  28. Gour NK, Borthakur K, Paul S, Chandra Deka R (2020) Tropospheric degradation of 2-fluoropropene (CH3CF[dbnd]CH2) initiated by hydroxyl radical: reaction mechanisms, kinetics and atmospheric implications from DFT study. Chemosphere 238. https://doi.org/10.1016/j.chemosphere.2019.124556

  29. Özen AS, Aviyente V, Klein RA (2003) Modeling the oxidative degradation of azo dyes: a density functional theory study. J Phys Chem A 107:4898–4907. https://doi.org/10.1021/jp026287z

    Article  CAS  Google Scholar 

  30. Ruff F, Szabó D, Rábai J, Jalsovszky I, Farkas Ö (2019) Mechanism for the reactions of sulfides with hypochlorous acid and N-chlorosulfon-amides: formation of solvated chlorosulfonium cation and λ4-sulfane intermediates. J Phys Org Chem 32. https://doi.org/10.1002/poc.4005

  31. Dennington R, Keith TA, Millam JM (2016) GaussView, Version 5.0. Semichem Inc., Shawnee Mission, KS

  32. Gonzalez C, Schlegel HB (1990) Reaction path following in massweighted internal coordinates Cartesians and with internal coordinates without mass-weighting. J Phys Chem 94:5523. https://doi.org/10.1021/j100377a021

  33. Saїd AE hadj, Mekelleche SM (2021) Antioxidant activity of Trolox derivatives toward methylperoxyl radicals: thermodynamic and kinetic theoretical study. Theor Chem Acc 140. https://doi.org/10.1007/s00214-021-02815-z

  34. Levine IN (2009) Physical Chemistry, 6th edn. Mc Graw Hill Higher Education, New York

  35. Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Nati Acad Sci 82:6723–6726

    Article  CAS  Google Scholar 

  36. Gurkan YY, Turkten N, Hatipoglu A, Cinar Z (2012) Photocatalytic degradation of cefazolin over N-doped TiO 2 under UV and sunlight irradiation: prediction of the reaction paths via conceptual DFT. Chem Eng J 184:113–124. https://doi.org/10.1016/j.cej.2012.01.011

    Article  CAS  Google Scholar 

  37. Foresman J, Frish E (1996) Exploring chemistry. Gaussian Inc, Pittsburg

    Google Scholar 

  38. Khatri V, Dhattarwal HS, Kashyap HK, Singh G (2021) First-principles based theoretical investigation of impact of polyolefin structure on photooxidation behavior. J Comput Chem 42:1710–1719. https://doi.org/10.1002/jcc.26702

    Article  CAS  PubMed  Google Scholar 

  39. Hatipoglu A, Vione D, Yalçin Y, Minero C, Çinar Z (2010) Photo-oxidative degradation of toluene in aqueous media by hydroxyl radicals. J Photochem Photobiol A Chem 215:59–68. https://doi.org/10.1016/j.jphotochem.2010.07.021

    Article  CAS  Google Scholar 

  40. Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338. https://doi.org/10.1021/ja01607a027

    Article  CAS  Google Scholar 

  41. Serna-Galvis EA, Silva-Agredo J, Giraldo AL, Flórez OA, Torres-Palma RA (2016) Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chem Eng J 284:953–962. https://doi.org/10.1016/j.cej.2015.08.154

    Article  CAS  Google Scholar 

  42. Timm A, Borowska E, Majewsky M, Merel S, Zwiener C, Bräse S, Horn H (2019) Photolysis of four β-lactam antibiotics under simulated environmental conditions: degradation, transformation products and antibacterial activity. Sci Total Environ 651:1605–1612. https://doi.org/10.1016/j.scitotenv.2018.09.248

    Article  CAS  PubMed  Google Scholar 

  43. Antonin VS, Aquino JM, Silva BF, Silva AJ, Rocha-Filho RC (2019) Comparative study on the degradation of cephalexin by four electrochemical advanced oxidation processes: evolution of oxidation intermediates and antimicrobial activity. Chem Eng J 372:1104–1112. https://doi.org/10.1016/j.cej.2019.04.185

    Article  CAS  Google Scholar 

  44. Song W, Chen W, Cooper WJ, Greaves J, Miller GE (2008) Free-radical destruction of β-lactam antibiotics in aqueous solution. J Phys Chem A 112:7411–7417. https://doi.org/10.1021/jp803229a

    Article  CAS  PubMed  Google Scholar 

  45. Ali MA, Rajakumar B (2011) Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory. Comput Theor Chem 964:283–290. https://doi.org/10.1016/j.comptc.2011.01.013

    Article  CAS  Google Scholar 

  46. Duarte F, Åqvist J, Williams NH, Kamerlin SCL (2015) Resolving apparent conflicts between theoretical and experimental models of phosphate monoester hydrolysis. J Am Chem Soc 137:1081–1093. https://doi.org/10.1021/ja5082712

    Article  CAS  PubMed  Google Scholar 

  47. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices — a review. J Environ Manage 92:2304–2347

    Article  CAS  PubMed  Google Scholar 

  48. Giraldo-Aguirre AL, Serna-Galvis EA, Erazo-Erazo ED, Silva-Agredo J, Giraldo-Ospina H, Flórez-Acosta OA, Torres-Palma RA (2018) Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. Environ Sci Pollut Res 25:20293–20303. https://doi.org/10.1007/s11356-017-8420-z

    Article  CAS  Google Scholar 

  49. Serna-Galvis EA, Montoya-Rodríguez D, Isaza-Pineda L, Ibáñez M, Hernández F, Moncayo-Lasso A, Torres-Palma RA (2019) Sonochemical degradation of antibiotics from representative classes—considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrason Sonochem 50:157–165. https://doi.org/10.1016/j.ultsonch.2018.09.012

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by Yildiz Technical University Research Coordination with Project number FDK-2021–4138. We also acknowledge computational resources that are provided by TÜBİTAK ULAKBİM, High Performance and Grid Computing Center (TRUBA).

Author information

Authors and Affiliations

Authors

Contributions

AH: conceptualization, writing—reviewing and editing. SA: DFT calculations, writing.

Corresponding author

Correspondence to Arzu Hatipoglu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3537 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydogdu, S., Hatipoglu, A. Aqueous degradation of 6-APA by hydroxyl radical: a theoretical study. J Mol Model 29, 222 (2023). https://doi.org/10.1007/s00894-023-05636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05636-y

Keywords

Navigation