Skip to main content
Log in

Competitive formation of molecular inclusion complexes of chlordecone and β-hexachlorocyclohexane with natural cyclodextrins: DFT and molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Chlordecone (CLD) and β-hexachlorocyclohexane (β-HCH) are chlorinated pesticides that coexist as persistent organic pollutants in the groundwater of several countries in the Caribbean, being an environmental issue. This work evaluates theoretically the competitive formation of host–guest complexes pesticides@cyclodextrines (CDs) as an alternative for water purification and selective separation of pesticides.

Methods

Quantum mechanical calculations based on density functional theory (DFT) and classical molecular dynamics (MD) simulations were used to achieve information on geometries, energies, structure, and dynamics of guest–host complexes in the gas phase, implicit solvent medium, and in aqueous solutions.

Results

DFT studies showed that interactions of both pesticides with CDs are mediated by steric factors and guided by maximization of the hydrophobic interactions either with the other pesticide or with the CD cavity’s inner atoms. MD results corroborate the formation of stable complexes of both pesticides with the studied CDs. α-CD exhibited a preference for the smaller β-HCH molecule over the CLD that could not perturb the formed complex.

Conclusions

The simulation of competitive formation with γ-CD illustrated that this molecule could accommodate both pesticides inside its cavity. These results suggest that CDs with smaller cavity sizes such as α-CD could be used for selective separation of β-HCH from CLD in water bodies, while γ-CD could be used for methods that aim to remove both pesticides at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. Jones KC, De Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–21

    Article  CAS  PubMed  Google Scholar 

  2. Lallas PL (2001) The stockholm convention on persistent organic pollutants. Amer J Intern Law 95(3):692–708

  3. Della Rossa P, Jannoyer M, Mottes C, Plet J, Bazizi A, Arnaud L et al (2017) Linking current river pollution to historical pesticide use: insights for territorial management? Sci Total Environ 574:1232–42

    Article  CAS  PubMed  Google Scholar 

  4. Robert S (2012) Historique de la contamination des sédiments littoraux des Antilles françaises par la chlordécone (ChloSed). Rapport final de convention MAAP-Ifremer; Ifremer: L’Houmeau, p 92

  5. Alonso-Hernández CM, Gómez-Batista M, Cattini C, Villeneuve J-P, Oh J (2012) Organochlorine pesticides in green mussel, Perna viridis, from the Cienfuegos Bay, Cuba. Bull Environ Contam Toxicol 89:995–9

    Article  PubMed  Google Scholar 

  6. Alonso-Hernandez CM, Mesa-Albernas M, Tolosa I (2014) Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in sediments from the Gulf of Batabanó, Cuba. Chemosphere 94:36–41

    Article  CAS  PubMed  Google Scholar 

  7. Dierksmeier G (1996) Pesticide contamination in the Cuban agricultural environment. TrAC Trends Anal Chem 15:154–9

    Article  CAS  Google Scholar 

  8. Tolosa I, Mesa-Albernas M, Alonso-Hernandez CM (2010) Organochlorine contamination (PCBs, DDTs, HCB, HCHs) in sediments from Cienfuegos bay. Cuba. Mar Pollut Bull 60:1619–24

    Article  CAS  PubMed  Google Scholar 

  9. Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–92

    Article  CAS  PubMed  Google Scholar 

  10. Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–207

    Article  CAS  Google Scholar 

  11. Xiao H, Li N, Wania F (2004) Compilation, evaluation, and selection of physical-chemical property data for α-, β-, and γ-hexachlorocyclohexane. J Chem Eng Data 49:173–85

    Article  CAS  Google Scholar 

  12. Newhouse K, Berner T, Mukerjee D, Rooney A (2009) Toxicological review of chlordecone (kepone) EPA/635/R-07 4:663–677

  13. Cruz-González G, Julcour C, Chaumat H, Bourdon V, Ramon-Portugal F, Gaspard S et al (2018) Degradation of chlordecone and beta-hexachlorocyclohexane by photolysis,(photo-) fenton oxidation and ozonation. J Environ Sci Health B 53:121–5

    Article  PubMed  Google Scholar 

  14. Durimel A, Passé-Coutrin N, Jean-Marius C, Gadiou R, Enriquez-Victorero C, Hernández-Valdés D et al (2015) Role of acidic sites in beta-hexachlorocyclohexane (β-HCH) adsorption by activated carbons: molecular modelling and adsorption–desorption studies. RSC Adv 5:85153–64

    Article  CAS  Google Scholar 

  15. Gamboa-Carballo JJ, Melchor-Rodríguez K, Hernández-Valdés D, Enriquez-Victorero C, Montero-Alejo AL, Gaspard S et al (2016) Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions. J Mol Graph Model 65:83–93

    Article  CAS  PubMed  Google Scholar 

  16. Lee J-U, Lee S-S, Lee S, Oh HB (2020) Noncovalent complexes of cyclodextrin with small organic molecules: applications and insights into host–guest interactions in the gas phase and condensed phase. Molecules 25:4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oliveri V, Vecchio G (2018) Metallocyclodextrins in medicinal chemistry. Future Med Chem 10:663–77

    Article  CAS  PubMed  Google Scholar 

  18. Crini G (2014) A history of cyclodextrins. Chem Rev 114:10940–75

    Article  CAS  PubMed  Google Scholar 

  19. Bouhadiba A, Rahali S, Belhocine Y, Allal H, Nouar L, Rahim M (2020) Structural and energetic investigation on the host/guest inclusion process of benzyl isothiocyanate into β-cyclodextrin using dispersion-corrected DFT calculations. Carbohydr Res 491:107980

    Article  CAS  PubMed  Google Scholar 

  20. Bilensoy E (ed) (2011) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. Current and future industrial applications. Hoboken, Wiley, p 395. https://doi.org/10.1002/9780470926819

  21. Duca G, Boldescu V (2008) Cyclodextrins–fields of application. Part I. Chem J Moldova. Gen Ind Ecol Chem 3:30–7

    Article  Google Scholar 

  22. Ferino-Pérez A, Gamboa-Carballo JJ, Ranguin R, Levalois-Grützmacher J, Bercion Y, Gaspard S et al (2019) Evaluation of the molecular inclusion process of β-hexachlorocyclohexane in cyclodextrins. RSC Adv 9:27484–27499

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rana VK, Kissner R, Gaspard S, Levalois-Grützmacher J (2016) Cyclodextrin as a complexation agent in the removal of chlordecone from water. Chem Eng J 293:82–9

    Article  CAS  Google Scholar 

  24. Gamboa-Carballo JJ, Ferino-Pérez A, Rana VK, Levalois-Grützmacher J, Gaspard S, Montero-Cabrera LA et al (2020) Theoretical evaluation of the molecular inclusion process between chlordecone and cyclodextrins: a new method for mitigating the basis set superposition error in the case of an implicit solvation model. J Chem Inf Model 60:2115–25

    Article  CAS  PubMed  Google Scholar 

  25. Jáuregui-Haza U, Ferino-Pérez A, Gamboa-Carballo JJ, Gaspard S (2020) Guest-host complexes of 1-iodochlordecone and β-1-iodo-pentachlorocyclohexane with cyclodextrins as radiotracers of organochlorine pesticides in polluted water. Environ Sci Pollut Res Int 27:41105–16

    Article  PubMed  Google Scholar 

  26. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

  27. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

  28. Case D, Pearlman D, Caldwell J, Cheatham T III, Wang J, Ross W et al (2004) Amber 8. University of California at San Francisco, San Francisco

    Google Scholar 

  29. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL et al (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates 29:622–655

    CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) A prototype for graphene material simulation: structures and interaction potentials of coronene dimers. J Phys Chem C 112:4061–7

    Article  CAS  Google Scholar 

  31. Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Organ Chem 22:1127–35

    Article  CAS  Google Scholar 

  32. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–65

    Article  CAS  PubMed  Google Scholar 

  33. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–96

    Article  CAS  PubMed  Google Scholar 

  34. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J et al (2009) GAUSSIAN09. Gaussian Inc., Wallingford

    Google Scholar 

  35. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–80

    Article  CAS  Google Scholar 

  36. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–60

    Article  PubMed  Google Scholar 

  37. Martínez JM, Martínez L (2003) Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking. J Comput Chem 24:819–25

    Article  PubMed  Google Scholar 

  38. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–64

    Article  PubMed  Google Scholar 

  39. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. Comput Chem 18:1463–72

    Article  CAS  Google Scholar 

  40. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–92

    Article  CAS  Google Scholar 

  41. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  42. Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  43. Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Annu 7:306–17

    Article  CAS  Google Scholar 

  44. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–18

    Article  PubMed  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Computational calculations were performed using Wahoo, the cluster of the Centre Commun de Calcul Intensif of the Université des Antilles, Guadeloupe, France. The authors wish to thank Raphael Pasquier, Jacques Laminie and Pascal Poullet for their support with the calculation facilities. The Informatics service of InSTEC at Havana, Cuba, is also gratefully acknowledged. Babak Minofar acknowledges the access to computational resources provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the program “Projects of Large Research, Development, and Innovations Infrastructures”. This work was financially supported by the project CIMPest (CBA-330810-2018-P-1, INTEC, Dominican Republic), the project DetDePest (CAPES, Guadeloupe), and project TATARCOP (InSTEC, Cuba). We thanks the valuable help of Dr. David Reha, University of South Bohemia, during last revision of the manuscript.

Funding

This work was supported by the project CIMPest (CBA-330810–2018-P-1, INTEC, Dominican Republic), the project DetDePest (CAPES, Guadeloupe), and project TATARCOP (InSTEC, Cuba).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Anthuan Ferino-Pérez, Babak Minofar, Ulises J. Jaúregui-Haza; Data curation: Anthuan Ferino-Pérez, Queiroz Portorreal, Juan J. Gamboa-Carballo, Babak Minofar; Formal analysis: Anthuan Ferino-Pérez, Babak Minofar, Sarra Gaspard, Ulises J. Jaúregui-Haza; Funding acquisition [Sarra Gaspard, Ulises J. Jaúregui-Haza; Investigation: Anthuan Ferino-Pérez, Queiroz Portorreal, Juan J. Gamboa-Carballo, Babak Minofar; Methodology: Anthuan Ferino-Pérez, Babak Minofar, Ulises J. Jaúregui-Haza; Project administration: Ulises J. Jaúregui-Haza; Resources: Babak Minofar, Sarra Gaspard, Ulises J. Jaúregui-Haza; Software: Anthuan Ferino-Pérez, Juan J. Gamboa-Carballo, Babak Minofar; Supervision: Babak Minofar, Sarra Gaspard, Ulises J. Jaúregui-Haza; Visualization: Anthuan Ferino-Pérez, Babak Minofar; Writing – original draft: Anthuan Ferino-Pérez, Babak Minofar, Ulises J. Jaúregui-Haza; Writing – review & editing: Juan J. Gamboa-Carballo, Sarra Gaspard, Ulises J. Jaúregui-Haza.

Corresponding author

Correspondence to Ulises J. Jaúregui-Haza.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 797 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferino-Pérez, A., Portorreal, Q., Gamboa-Carballo, J.J. et al. Competitive formation of molecular inclusion complexes of chlordecone and β-hexachlorocyclohexane with natural cyclodextrins: DFT and molecular dynamics study. J Mol Model 29, 196 (2023). https://doi.org/10.1007/s00894-023-05600-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05600-w

Keywords

Navigation