Skip to main content
Log in

Inclusion of paraoxon, parathion, and methyl parathion into α-cyclodextrin: a GFN2-xTB multi-equilibrium quantum study

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new theoretical approach was recently addressed to predict cyclodextrin host–guest binding constants with the GFN2-xTB semiempirical quantum method. Within such a strategy, a set of starting supramolecular arrangements is automatically obtained through the UD-APARM software, and many optimized host–guest systems are used to obtain each binding constant. In the present work, within the scope of the multi-equilibrium treatment, we carried out a theoretical study concerning the host–guest systems formed with paraoxon (PRX), methyl-parathion (MPTN), and parathion (PTN) into α-cyclodextrin (α-CD), for which experimental data were addressed. Those guests correspond to pesticides in use, and their inclusion plays a role in remediation technology. The procedure for estimating binding constants for the host–guest system is discussed in terms of the ranges for the supramolecular parameters employed in exploring the GFN2-xTB Potential Energy Surface (PES). As a result, by investigating an unprecedented number of starting systems (3,076), we identified that proper exploration of the GFN2-xTB PES gives a reliable prediction of the binding constant in solution. Furthermore, with the study of different starting associations, for PTN/α-CD, we found an excellent linear correlation (R2 = 0.987) between GFN2-xTB data and experimental information, which, as in our previous study, supports the discussed methodology for application in predicting binding constants for CD-based host–guest systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98(5), 1743–1753 (1998). https://doi.org/10.1021/cr970022c

    Article  CAS  PubMed  Google Scholar 

  2. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98(5), 1875–1917 (1998). https://doi.org/10.1021/cr970015o

    Article  CAS  PubMed  Google Scholar 

  3. Jansook, P., Ogawa, N., Loftsson, T.: Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 535(1–2), 272–284 (2018). https://doi.org/10.1016/j.ijpharm.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  4. Dhiman, P., Bhatia, M.: Pharmaceutical applications of cyclodextrins and their derivatives. J. Incl. Phenom. Macrocycl. Chem. 98(3–4), 171–186 (2020). https://doi.org/10.1007/s10847-020-01029-3

    Article  CAS  Google Scholar 

  5. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004). https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  6. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014). https://doi.org/10.1021/cr500081p

    Article  CAS  PubMed  Google Scholar 

  7. Kim, D.H., Lee, S.E., Pyo, Y.C., Tran, P., Park, J.S.: Solubility enhancement and application of cyclodextrins in local drug delivery. J. Pharm. Investig. 50(1), 17–27 (2020). https://doi.org/10.1007/s40005-019-00434-2

    Article  Google Scholar 

  8. Landy, D., Mallard, I., Ponchel, A., Monflier, E., Fourmentin, S.: Remediation technologies using cyclodextrins: an overview. Environ. Chem. Lett. 10(3), 225–237 (2012). https://doi.org/10.1007/s10311-011-0351-1

    Article  CAS  Google Scholar 

  9. Wang, J., Chen, B.: Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 281, 379–388 (2015). https://doi.org/10.1016/j.cej.2015.06.102

    Article  CAS  Google Scholar 

  10. Yadav, M., Thakore, S., Jadeja, R.: A review on remediation technologies using functionalized cyclodextrin. Environ. Sci. Pollut. Res. 29(1), 236–250 (2022). https://doi.org/10.1007/s11356-021-15887-y

    Article  Google Scholar 

  11. Sikder, M.T., Rahman, M.M., Jakariya, M., Hosokawa, T., Kurasaki, M., Saito, T.: Remediation of water pollution with native cyclodextrins and modified cyclodextrins: a comparative overview and perspectives. Chem. Eng. J. 355, 920–941 (2019). https://doi.org/10.1016/j.cej.2018.08.218

    Article  CAS  Google Scholar 

  12. Waris, K.H., Lee, V.S., Mohamad, S.: Pesticide remediation with cyclodextrins: a review. Environ. Sci. Pollut. Res. 28(35), 47785–47799 (2021). https://doi.org/10.1007/s11356-021-15434-9

    Article  CAS  Google Scholar 

  13. Flaherty, R.J., Nshime, B., DeLaMarre, M., DeJong, S., Scott, P., Lantz, A.W.: Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere 91(7), 912–920 (2013). https://doi.org/10.1016/j.chemosphere.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  14. Sambrook, M.R., Vincent, J.C., Ede, J.A., Gass, A., Cragg, P.J.: Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent soman (GD) and commonly used simulants. RSC Adv. 7, 38069–38076 (2017). https://doi.org/10.1039/c7ra03328a

    Article  CAS  Google Scholar 

  15. Lorke, D.E., Nurulain, S.M., Hasan, M.Y., Kuča, K., Petroianu, G.A.: Combined pre- and posttreatment of paraoxon exposure. Molecules (2020). https://doi.org/10.3390/molecules25071521

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rani, M., Shanker, U.: Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations. Int. J. Environ. Sci. Technol. 15(6), 1347–1380 (2018). https://doi.org/10.1007/s13762-017-1512-y

    Article  Google Scholar 

  17. Sharma, A., et al.: Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1(11), 1–16 (2019). https://doi.org/10.1007/s42452-019-1485-1

    Article  CAS  Google Scholar 

  18. Garcia, S.J., Abu-Qare, A.W., Meeker-O’Connell, W.A., Borton, A.J., Abou-Donia, M.B.: Methyl parathion: a review of health effects. J. Toxicol. Environ. Heal. —Part B Crit. Rev. 6(2), 185–210 (2003). https://doi.org/10.1080/10937400306471

    Article  CAS  Google Scholar 

  19. Anconi, C.P.A., Souza, L.C.A.: Multi-equilibrium approach to study cyclodextrins host–guest systems with GFN2-xTB quantum method: a case study of phosphorothioates included in β-cyclodextrin. Comput. Theor. Chem. 1217, 113916 (2022)

    Article  CAS  Google Scholar 

  20. Fernandes, C.M., Carvalho, R.A., Pereira da Costa, S., Veiga, F.J.B.: Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin, hydroxypropyl-β-cyclodextrin and triacetyl-β-cyclodextrin in solution. Structural studies by 1H NMR and ROESY experiments. Eur. J. Pharm. Sci. 18(5), 285–296 (2003). https://doi.org/10.1016/S0928-0987(03)00025-3

    Article  CAS  PubMed  Google Scholar 

  21. Mura, P.: Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J. Pharm. Biomed. Anal. 101, 238–250 (2014). https://doi.org/10.1016/j.jpba.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  22. Saha, S., Roy, A., Roy, M.N.: Mechanistic investigation of inclusion complexes of a sulfa drug with α- and β-cyclodextrins. Ind. Eng. Chem. Res. 56(41), 11672–11683 (2017). https://doi.org/10.1021/acs.iecr.7b02619

    Article  CAS  Google Scholar 

  23. Saha, S., Roy, A., Roy, K., Roy, M.N.: Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep35764

    Article  CAS  Google Scholar 

  24. Samuelsen, L., Holm, R., Schönbeck, C.: Cyclodextrin binding constants as a function of pH for compounds with multiple pKa values. Int. J. Pharm. 585, 119493 (2020). https://doi.org/10.1016/j.ijpharm.2020.119493

    Article  CAS  PubMed  Google Scholar 

  25. Tafazzoli, M., Ghiasi, M.: Structure and conformation of α-, β-and γ-cyclodextrin in solution: theoretical approaches and experimental validation. Carbohydr. Polym. 78(1), 10–15 (2009)

    Article  CAS  Google Scholar 

  26. Usacheva, T.R., et al.: Complexation of cyclodextrins with benzoic acid in water-organic solvents: a solvation-thermodynamic approach. Molecules (2021). https://doi.org/10.3390/molecules26154408

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sadrerafi, K., Moore, E.E., Lee, M.W.: Association constant of β-cyclodextrin with carboranes, adamantane, and their derivatives using displacement binding technique. J. Incl. Phenom. Macrocycl. Chem. 83(1–2), 159–166 (2015). https://doi.org/10.1007/s10847-015-0552-5

    Article  CAS  Google Scholar 

  28. Bouchemal, K., Mazzaferro, S.: How to conduct and interpret ITC experiments accurately for cyclodextrin–guest interactions. Drug Discov. Today 17(11–12), 623–629 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98(5), 1829–1873 (1998). https://doi.org/10.1021/cr9700179

    Article  CAS  PubMed  Google Scholar 

  30. Castro, E.A., Barbiric, D.A.J.: Current theoretical methods applied to study cyclodextrins and their complexes. An. des la Asoc. Quim. Argent. 90(4–6), 1–44 (2002). https://doi.org/10.1002/chin.200551276

    Article  CAS  Google Scholar 

  31. Nagaraju, M., Sastry, G.N.: Theoretical studies on inclusion complexes of cyclodextrins. J. Phys. Chem. A 113(34), 9533–9542 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Anconi, C.P.A., Nascimento, C.S., Fedoce-Lopes, J., Dos Santos, H.F., De Almeida, W.B.: Ab initio calculations on low-energy conformers of α-cyclodextrin. J. Phys. Chem. A 111(48), 12127–12135 (2007). https://doi.org/10.1021/jp0762424

    Article  CAS  PubMed  Google Scholar 

  33. Ding, B., Yu, Y., Geng, S., Liu, B., Hao, Y., Liang, G.: Computational methods for the interaction between cyclodextrins and natural compounds: technology, benefits, limitations, and trends. J. Agric. Food Chem. 70(8), 2466–2482 (2022). https://doi.org/10.1021/acs.jafc.1c07018

    Article  CAS  PubMed  Google Scholar 

  34. Dinar, K.: Theoretical and experimental study on inclusion complexation between guests and cyclodextrins: a critical review. J. Maroc. Chim. Hétérocyclique 19(4), 77–84 (2020). https://doi.org/10.48369/IMIST.PRSM/jmch-v19i4.24288

    Article  CAS  Google Scholar 

  35. Dodziuk, H.: Rigidity versus flexibility. A review of experimental and theoretical studies pertaining to the cyclodextrin nonrigidity. J. Mol. Struct. 614(1–3), 33–45 (2002)

    Article  CAS  Google Scholar 

  36. Anconi, C.P.A.: Relative position and relative rotation in supramolecular systems through the analysis of the principal axes of inertia: ferrocene/cucurbit[7]uril and Ferrocenyl azide/β-cyclodextrin case studies. ACS Omega 5(10), 5013–5025 (2020). https://doi.org/10.1021/acsomega.9b03914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anconi, C.P.A., Nascimento, C.S., De Almeida, W.B., Dos Santos, H.F.: The role played by head-tail configuration on the molecular weight distribution of α-cyclodextrin tubes. J. Incl. Phenom. Macrocycl. Chem. 60(1–2), 25–33 (2008). https://doi.org/10.1007/s10847-007-9348-6

    Article  CAS  Google Scholar 

  38. Faucci, M.T., Melani, F., Mura, P.: 1H-NMR and molecular modelling techniques for the investigation of the inclusion complex of econazole with α-cyclodextrin in the presence of malic acid. J. Pharm. Biomed. Anal. 23(1), 25–31 (2000). https://doi.org/10.1016/S0731-7085(00)00260-0

    Article  CAS  PubMed  Google Scholar 

  39. Dahlheim, C.E., Dali, M.M., Naringrekar, V.H., Miller, S.A., Shukla, R.B.: Multidisciplinary investigation of atypical inclusion complexes of β-cyclodextrin and a phospholipase-A2 inhibitor. J. Pharm. Sci. 94(2), 409–422 (2005). https://doi.org/10.1002/jps.20245

    Article  CAS  PubMed  Google Scholar 

  40. Floare, C.G., Pirnau, A., Bogdan, M.: 1H NMR spectroscopic characterization of inclusion complexes of tolfenamic and flufenamic acids with β-cyclodextrin. J. Mol. Struct. 1044, 72–78 (2013). https://doi.org/10.1016/j.molstruc.2012.11.021

    Article  CAS  Google Scholar 

  41. Jug, M., Mennini, N., Kövér, K.E., Mura, P.: Comparative analysis of binary and ternary cyclodextrin complexes with econazole nitrate in solution and in solid state. J. Pharm. Biomed. Anal. 91, 81–91 (2014). https://doi.org/10.1016/j.jpba.2013.12.029

    Article  CAS  PubMed  Google Scholar 

  42. Casadesús, R., et al.: Testing electronic structure methods for describing intermolecular H ⋯ H interactions in supramolecular chemistry. J. Comput. Chem. 25(1), 99–105 (2004). https://doi.org/10.1002/jcc.10371

    Article  CAS  PubMed  Google Scholar 

  43. Grimme, S., Bannwarth, C., Shushkov, P.: A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13(5), 1989–2009 (2017). https://doi.org/10.1021/acs.jctc.7b00118

    Article  CAS  PubMed  Google Scholar 

  44. Bannwarth, C., et al.: Extended tight-binding quantum chemistry methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11(2), 1–49 (2021). https://doi.org/10.1002/wcms.1493

    Article  CAS  Google Scholar 

  45. Ferrero, R., et al.: On the interactions of melatonin/β-cyclodextrin inclusion complex: a novel approach combining efficient semiempirical extended tight-binding (xTB) results with ab initio methods. Molecules 26(19), 5881 (2021). https://doi.org/10.3390/molecules26195881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamiya, M., Mitsuhashi, S., Makino, M.: Catalytic properties of cyclodextrins on the hydrolysis of parathion and paraoxon in aquatic medium containing humic acids. Chemosphere 25(12), 1783–1796 (1992). https://doi.org/10.1016/0045-6535(92)90019-N

    Article  CAS  Google Scholar 

  47. Kim, S., et al.: PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 49(D1), D1388–D1395 (2021). https://doi.org/10.1093/nar/gkaa971

    Article  CAS  PubMed  Google Scholar 

  48. Pracht, P., Bohle, F., Grimme, S.: Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 22(14), 7169–7192 (2020). https://doi.org/10.1039/c9cp06869d

    Article  CAS  PubMed  Google Scholar 

  49. Puliti, R., Mattia, C.A., Paduano, L.: Crystal structure of a new α-cyclodextrin hydrate form. Molecular geometry and packing features: Disordered solvent contribution. Carbohydr. Res. 310(1–2), 1–8 (1998). https://doi.org/10.1016/S0008-6215(98)00150-5

    Article  CAS  PubMed  Google Scholar 

  50. Ehlert, S., Stahn, M., Spicher, S., Grimme, S.: Robust and efficient implicit solvation model for fast semiempirical methods. J. Chem. Theory Comput. 17(7), 4250–4261 (2021). https://doi.org/10.1021/acs.jctc.1c00471

    Article  CAS  PubMed  Google Scholar 

  51. Krepps, M.K., Parkin, S., Atwood, D.A.: Hydrogen Bonding with Sulfur 2001. Cryst. Growth Des. (2001). https://doi.org/10.1021/cg015505v

    Article  Google Scholar 

  52. Platts, J.A., et al.: Directionality of hydrogen bonds to sulfur and oxygen. J. Am. Chem. Soc. 118, 2726–2733 (1996)

    Article  CAS  Google Scholar 

  53. Bannwarth, C., Ehlert, S., Grimme, S.: GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15(3), 1652–1671 (2019). https://doi.org/10.1021/acs.jctc.8b01176

    Article  CAS  PubMed  Google Scholar 

  54. Dodziuk, H., Lukin, O.: Dependence of the average energy between the 1: 2 complexes of enantiomeric a -pinenes with a -cyclodextrin on the length of dynamic simulation. Chem. Phys. Lett. 327, 18–22 (2000)

    Article  CAS  Google Scholar 

  55. Bonnet, P., Jaime, C., Morin-allory, L.: α -, β, and γ -cyclodextrin dimers. Molecular modeling studies by molecular mechanics and molecular dynamics simulations. J. Org. Chem. 66, 689–692 (2001)

    Article  CAS  PubMed  Google Scholar 

  56. I. Bea, M. Gotsev, P. Ivanov et al., Chelate Effect in Cyclodextrin Dimers: A Computational (MD, MM/PPSA, and MM/GBSA) study, 71, 5, 2056–2063 (2006)

  57. Bea, I., Jaime, C., Kollman, P., Bea, I.: Molecular recognition by β-cyclodextrin derivatives : molecular dynamics, free-energy perturbation and molecular mechanics/poisson—boltzmann surface area goals and problems. Theor. Chem. Acc. 108, 286–292 (2002). https://doi.org/10.1007/s00214-002-0384-4

    Article  Google Scholar 

  58. Pereira, R.A., da Silva Borges, W.M., Peraro, C.R., Anconi, C.P.A.: Theoretical inclusion of deprotonated 2,4-D and dicamba pesticides in ß-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 86(3–4), 343–349 (2016). https://doi.org/10.1007/s10847-016-0665-5

    Article  CAS  Google Scholar 

  59. Casadesús, R., Moreno, M., González-Lafont, À., Lluch, J.M., Repasky, M.P.: Testing electronic structure methods for describing intermolecular H··· H interactions in supramolecular chemistry. J. Comput. Chem. 25(1), 99–105 (2004). https://doi.org/10.1002/jcc.10371

    Article  CAS  PubMed  Google Scholar 

  60. Anconi, C.P.A., et al.: Inclusion complexes of a -cyclodextrin and the cisplatin analogues oxaliplatin, carboplatin and nedaplatin : a theoretical approach. Chem. Phys. Lett. 515(1–3), 127–131 (2011). https://doi.org/10.1016/j.cplett.2011.09.005

    Article  CAS  Google Scholar 

  61. Teixeira, M.G., et al.: Theoretical and Experimental study of inclusion complexes formed by isoniazid and modified β—cyclodextrins: 1 H NMR structural determination and antibacterial activity evaluation. J. Phys. Chem. B 12, 5 (2014). https://doi.org/10.1021/jp409579m

    Article  CAS  Google Scholar 

  62. Pereira, R.A., Anconi, C.P.A., Nascimento, C.S., De Almeida, W.B., Dos Santos, H.F.: Stability and spatial arrangement of the 2,4-dichlorophenoxyaceticacid and β-cyclodextrin inclusion compound: a theoretical study. Chem. Phys. Lett. 633(1), 158–162 (2015). https://doi.org/10.1016/j.cplett.2015.05.044

    Article  CAS  Google Scholar 

  63. Anconi, C.P.A., Santos, T.M.R., Souza, A.C.: Host—guest intermolecular hydrogen bonds and stability in aqueous media : the benzaldehyde/β-CD case study. J. Incl. Phenom. Macrocycl. Chem. 89(1), 137–142 (2017). https://doi.org/10.1007/s10847-017-0734-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Hélio Ferreira dos Santos for the access to the NEQC (Núcleo de Estudos em Química Computacional, UFJF, Brazil) computer facility and also thanks the Laboratório Central de Computação Científica (LCC) da UFLA for providing additional computing resources. Furthermore, professor Cleber Paulo Andrada Anconi also thanks the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for supporting the Laboratório de Química Fundamental (LQF), where the research was conducted.

Funding

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Author information

Authors and Affiliations

Authors

Contributions

JCM made the first calculations and provided the critical analysis of the data and the expansion of the scan to explore the quantum Potential Energy Surface (PES). Furthermore, JCM wrote the first version of the results and discussion section of the manuscript. CLCR, GT, and EFL obtained outcomes from quantum calculations and, in conjunction with JCM, worked with the vast amount of data to estimate the binding constants in aqueous media through the use of in-house routines (python 3) written by Cleber Anconi. Finally, CPAA supervised the research and wrote the manuscript along with inputs from the authors that revised the results and the first versions of the contribution.

Corresponding author

Correspondence to Cleber Paulo Andrada Anconi.

Ethics declarations

Competing interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1278 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcelino, J.C., Ribeiro, C.L.C., Teixeira, G. et al. Inclusion of paraoxon, parathion, and methyl parathion into α-cyclodextrin: a GFN2-xTB multi-equilibrium quantum study. J Incl Phenom Macrocycl Chem 103, 263–276 (2023). https://doi.org/10.1007/s10847-023-01192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01192-3

Keywords

Navigation