Skip to main content
Log in

Elucidating esterification reaction during deposition of cutin monomers from classical molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural behavior of some cutin monomers, when deposited on mica support, was extensively investigated by our research group. However, other events, such as esterification reaction (ER), are still a way to explore. In this paper, we explore possible ER that could occur when these monomers adsorb on support. Although classical molecular dynamics simulations are not able to capture reactive effects, here, we show that they become valuable strategies to analyze the initial structural configurations to predict the most favorable reaction routes. Thus, when depositing aleuritic acid (ALE), it is observed that the loss of capacity to form self-assembled (SA) systems favors different routes to occur ER. In pure ALE bilayers systems, an ER is given exclusively through the –COOH and primary –OH groups. In pure ALE monolayers systems, the ER does not happen when the system is self-assembled. However, for disorganized systems, it is able to occur by two possible routes: –COOH and primary –OH (route 1) and –COOH and secondary –OH (route 2). When palmitic acid (PAL) is added in small quantities, ALE SAMs can now form an ER. In this case, ER occurs mostly through the –COOH and secondary –OH groups. However, when the presence of PAL is dominant, ER can occur with either of both possibilities, that is, routes 1 and 2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article [and its supplementary material].

References

  1. Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208(4447):990–1000

    Article  CAS  Google Scholar 

  2. Heredia-Guerrero JA, Heredia A, Domínguez E, Cingolani R, Bayer IS, Athanassiou A, Benítez JJ (2017) Cutin from agro-waste as a raw material for the production of bioplastics. J Exp Bot 68(19):5401–5410

    Article  CAS  Google Scholar 

  3. Gandini A, Pascoal Neto C, Silvestre AJD (2006) Suberin: a promising renewable resource for novel macromolecular materials. Prog Polym Sci 31(10):878–892

    Article  CAS  Google Scholar 

  4. Heredia-Guerrero JA, San-Miguel MA, Luna M, Domínguez E, Heredia A, Benítez JJ (2011) Structure and support induced structure disruption of soft nanoparticles obtained from hydroxylated fatty acids. Soft Matter 7(9):4357–4363

    Article  CAS  Google Scholar 

  5. Domínguez E, Heredia-Guerrero JA, Benítez JJ, Heredia A (2010) Self-assembly of supramolecular lipid nanoparticles in the formation of plant biopolyester cutin. Mol BioSyst 6(6):948–950

    Article  CAS  Google Scholar 

  6. Heredia-Guerrero JA, Domínguez E, Luna M, Benítez JJ, Heredia A (2010) Structural characterization of polyhydroxy fatty acid nanoparticles related to plant lipid biopolyesters. Chem Phys Lipids 163(3):329–333

    Article  CAS  Google Scholar 

  7. Kwiatkowska M, Wojtczak A, Popłońska K, Polit J, Stępiński D, Dominguez E, Heredia A (2014) Cutinsomes and lipotubuloids appear to participate in cuticle formation in Ornithogalum umbellatum ovary epidermis: EM–immunogold research. Protoplasma 251

  8. Correia VG, Bento A, Pais J, Rodrigues R, Haliński ŁP, Frydrych M, Greenhalgh A, Stepnowski P, Vollrath F, King AWT, Silva Pereira C (2020) The molecular structure and multifunctionality of the cryptic plant polymer suberin. Mater Today Biol 5:100039

    Article  CAS  Google Scholar 

  9. Heredia-Guerrero JA, Domínguez E, San-Miguel MA, Benítez JJ, Heredia A (2011) Self-assembly and polymerization of natural occurring fatty acids. In: Wythers MC (ed) Advances in Materials Science Research, vol 6, chapter 5. Nova Science Publishers, New York

    Google Scholar 

  10. Heredia-Guerrero JA, Caputo G, Guzman-Puyol S, Tedeschi G, Heredia A, Ceseracciu L, Benitez JJ, Athanassiou A (2019) Sustainable polycondensation of multifunctional fatty acids from tomato pomace agro-waste catalyzed by tin (II) 2-ethylhexanoate. Mater Today Sustain 3-4:100004

    Article  Google Scholar 

  11. Manrich A, Moreira FKV, Otoni CG, Lorevice MV, Martins MA, Mattoso LHC (2017) Hydrophobic edible films made up of tomato cutin and pectin. Carbohydr Polym 164:83–91

    Article  CAS  Google Scholar 

  12. Montanari A, Bolzoni L, Cigognini IM, Ciruelos A, Gómez Cardoso M, de la Torre R (2017) Tomato bio-based lacquer for sustainable metal packaging. Int Soc Hortic Sci:159–166

  13. Tedeschi G, Benitez JJ, Ceseracciu L, Dastmalchi K, Itin B, Stark RE, Heredia A, Athanassiou A, Heredia-Guerrero JA (2018) Sustainable fabrication of plant cuticle-like packaging films from tomato pomace agro-waste, beeswax, and alginate. ACS Sustain Chem Eng 6(11):14955–14966

    Article  CAS  Google Scholar 

  14. Heredia-Guerrero JA, San-Miguel MA, Sansom MSP, Heredia A, Benítez JJ (2009) Chemical reactions in 2D: self-assembly and self-esterification of 9(10),16-dihydroxypalmitic acid on mica surface. Langmuir 25(12):6869–6874

    Article  CAS  Google Scholar 

  15. Glowacki DR, Paci E, Shalashilin DV (2009) Boxed molecular dynamics: a simple and general technique for accelerating rare event kinetics and mapping free energy in large molecular systems. J Phys Chem B 113(52):16603–16611

    Article  CAS  Google Scholar 

  16. Smith W, Forester TR (1996) DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph 14(3):136–141

    Article  CAS  Google Scholar 

  17. Nauchitel VV (1981) Energy distribution function for the NVT canonical ensemble. Mol Phys 42(5):1259–1265

    Article  CAS  Google Scholar 

  18. Evans DJ, Holian BL (1985) The nose–hoover thermostat. J Chem Phys 83(8):4069–4074

    Article  CAS  Google Scholar 

  19. Pastor RW, MacKerell AD (2011) Development of the CHARMM force field for lipids. J Phys Chem Lett 2(13):1526–1532

    Article  CAS  Google Scholar 

  20. San-Miguel MA, Rodger PM (2010) Templates for wax deposition? Phys Chem Chem Phys 12(15):3887–3894

    Article  CAS  Google Scholar 

  21. San-Miguel MA, Rodger PM (2000) The effect of corrosion inhibitor films on deposition of wax to metal oxide surfaces. J Mol Struct THEOCHEM 506(1):263–272

    Article  CAS  Google Scholar 

  22. San-Miguel MA, Rodger PM (2001) Simulation of deposition of wax to iron oxide surfaces. Mol Simul 26(3):193–216

    Article  CAS  Google Scholar 

  23. Begić S, Jónsson E, Chen F, Forsyth M (2017) Molecular dynamics simulations of pyrrolidinium and imidazolium ionic liquids at graphene interfaces. Phys Chem Chem Phys 19(44):30010–30020

    Article  Google Scholar 

  24. Yokota Y, Miyamoto H, Imanishi A, Inagaki K, Morikawa Y, Fukui K-i (2018) Structural and dynamic properties of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/mica and graphite interfaces revealed by molecular dynamics simulation. Phys Chem Chem Phys 20(9):6668–6676

    Article  CAS  Google Scholar 

  25. Lee S, Lyulin AV, Frank CW, Yoon DY (2017) Interface characteristics of polystyrene melts in free-standing thin films and on graphite surface from molecular dynamics simulations. Polymer 116:540–548

    Article  CAS  Google Scholar 

  26. Heredia-Guerrero JA, San-Miguel MA, Sansom MSP, Heredia A, Benítez JJ (2010) Aleuritic (9,10,16-trihydroxypalmitic) acid self-assembly on mica. Phys Chem Chem Phys 12(35):10423–10428

    Article  CAS  Google Scholar 

  27. Brehm M, Kirchner B (2011) TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. J Chem Inf Model 51(8):2007–2023

    Article  CAS  Google Scholar 

  28. Bueno OVM, Benítez JJ, San-Miguel MA (2019) Understanding segregation processes in SAMs formed by mixtures of hydroxylated and non-hydroxylated fatty acids. RSC Adv 9(67):39252–39263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work used computational resources from the “Centro Nacional de Processamento de Alto Desempenho em São Paulo” (CENAPAD-SP), “Centro de Computação John David Rogers” (CCJDR-UNICAMP), and the CENAPAD-RJ (SDumont).

Funding

This work was funded in part by the Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (2013/07296-2; 2016/23891-6) and the National Council for the Improvement of Higher Education (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Miguel A. San-Miguel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Electronic supplementary material

ESM 1

(DOCX 186941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, O.V.M., Benítez, J.J. & San-Miguel, M.A. Elucidating esterification reaction during deposition of cutin monomers from classical molecular dynamics simulations. J Mol Model 26, 280 (2020). https://doi.org/10.1007/s00894-020-04544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04544-9

Keywords

Navigation