Skip to main content

Advertisement

Log in

Exploring triazine and heptazine based self assembled molecular materials through first principles investigations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Two-dimensional materials formed from the molecular self assembly of monomers through noncovalent interactions are of great importance in designing complex nanostructures with desired properties. The carbon nitride based heterocyclic systems, triazine and heptazine, are found to be promising candidates for generating various self assembled materials through (N....H) hydrogen bonding. Here, we explored graphyne and graphdiyne-like self assembled structures for carbon nitride materials using the density functional theory calculations. We systematically investigated the monolayer structures, stacked structures in different configurations, as well as the surface assembled structures on the Au(111) surface. In all four different monolayer structures, the monomers interact through the N...H hydrogen bonding. The electronic structure results indicate that the electronic properties in these structures can be tuned through the variation in the length of the acetylinic unit. The minimum energy stacked bilayer structure of triazine based material exactly matches with the experimentally reported structure. Surface assembled studies of the triazine based system show strong interaction between the Au(111) surface and the carbon nitride monolayer.

Self assembled two-dimensional molecular materials as well as the surface assemblies of triazine and heptazine based precursors are computationally investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  2. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798

    Article  CAS  PubMed  Google Scholar 

  3. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Christian Kemp K, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    Article  CAS  PubMed  Google Scholar 

  4. Sun Z, Martinez A, Wang F (2016) Optical modulators with 2D layered materials. Nat Photonics 10:227–238

    Article  CAS  Google Scholar 

  5. Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30

    Article  PubMed  Google Scholar 

  6. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Article  CAS  Google Scholar 

  7. Li MY, Chen CH, Shi Y, Li LJ (2016) Heterostructures based on two-dimensional layered materials and their potential applications. Mater Today 19:322–335

    Article  CAS  Google Scholar 

  8. Plass KE, Grzesiaka AL, Matzger AJ (2007) Molecular packing and symmetry of two-dimensional crystals. Acc Chem Res 40:287–293

    Article  CAS  PubMed  Google Scholar 

  9. Tahara K, Nakatani K, Iritani K, Feyter SD, Tobe Y (2016) Periodic functionalization of surface-confined pores in a two-dimensional porous network using a tailored building block. ACS Nano 10:2113–2120

    Article  CAS  PubMed  Google Scholar 

  10. Kudernac T, Lei S, Elemans JAAW, Feyter SD (2009) Two-dimensional supramolecular self-assembly: nanoporous networks on surface. Chem Soc Rev 38:402–421

    Article  CAS  PubMed  Google Scholar 

  11. Böhringer M, Morgenstern K, WD Schneider R, Berndt F, Mauri AD, Vita RC (1999) Two-dimensional self-assembly of supramolecular clusters and chains. Phys Rev Lett 83:324

    Article  Google Scholar 

  12. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 39:1805–1834

    Article  CAS  PubMed  Google Scholar 

  13. Pawin G, Wong KL, Kwon KY, Bartels L, Homomolecular Porous A (2006) Network at a Cu(111) surface. Science 313:961–962

    Article  CAS  PubMed  Google Scholar 

  14. Slater AG, Perdigão LMA, Beton PH, Champness NR (2014) Surface-based supramolecular chemistry using hydrogen bonds. Acc Chem Res 47:3417–3427

    Article  CAS  PubMed  Google Scholar 

  15. Perdigão LMA, Champness NR, Beton PH (2006) Surface self-assembly of the cyanuric acid-melamine hydrogen bonded network. Chem Commun 5:538–540

  16. Barrena E, de Oteyza DG, Dosch H, Wakayama Y (2007) 2D supramolecular self-assembly of binary organic monolayers. ChemPhysChem 8:1915–1918

    Article  CAS  PubMed  Google Scholar 

  17. Slater AG, Perdigão LMA, Beton PH, Champness NR (2010) Tailoring pores for guest entrapment in a unimolecular surface self-assembled hydrogen bonded network. Chem Commun 46:2775–2777

    Article  CAS  Google Scholar 

  18. Bonifazi D, Mohnani S, Llanes-Pallas A (2009) Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surface. Chem Eur J 15:7004–7025

    Article  CAS  PubMed  Google Scholar 

  19. Tahara K, Katayama K, Blunt MO, Iritani K, Feyter SD, Tobe Y (2014) Functionalized surface-confined pores: guest binding directed by lateral noncovalent interaction at the solid-liquid interface. ACS Nano 8:8683–8694

    Article  CAS  PubMed  Google Scholar 

  20. Silien C, Räisänen MT, Buck M, Supramolecular Hydrogen-bonded A (2009) Network as a diffusion barrier for metal adatoms. Angew Chem Int Ed 48:3349–3352

    Article  CAS  Google Scholar 

  21. Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116:5951–5956

    Article  CAS  Google Scholar 

  22. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  23. Srinivasu K, Modak B, Ghosh SK (2014) Porous graphitic carbon nitride: a possible metal-free photocatalyst for water splitting. J Phys Chem C 118:26479–26484

    Article  CAS  Google Scholar 

  24. Srinivasu K, Ghosh SK (2015) Photocatalytic splitting of water on s-triazine based graphitic carbon nitride: an ab initio investigation. J Mater Chem A 3:23011–23016

    Article  CAS  Google Scholar 

  25. Srinivasu K, Modak B, Ghosh SK (2016) Improving the photocatalytic activity of s-triazine based graphitic carbon nitride through metal decoration: an ab initio investigation. Phys Chem Chem Phys 18:26466–26474

    Article  CAS  PubMed  Google Scholar 

  26. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  27. Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47:3450–3453

    Article  CAS  Google Scholar 

  28. Bojdys MJ, Wohlgemuth SA, Thomas A, Antonietti M (2010) Ionothermal route to layered two-dimensional polymer-frameworks based on heptazine linkers. Macromolecules 43:6639–6645

    Article  CAS  Google Scholar 

  29. Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A (2013) Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene. Chem Mater 25:1542–1548

    Article  CAS  Google Scholar 

  30. Ohkita M, Kawano M, Suzuki T, Tsuji T (2002) Supramolecular graphyne: a C(sp)-H---N hydrogen-bonded unique network structure of 2,4,6,-triethynyl-1,3,5-triazine. Chem Commun 24:3054–3055

  31. Braml NE, Stegbauer L, Lotsch BV, Schnick W (2015) Synthesis of triazine-based materials by functionalization with alkynes. Chem Eur J 21:7866–7873

    Article  CAS  PubMed  Google Scholar 

  32. Ciesielski A, Cadeddu A, Palma CA, Gorczyński A, Patroniak V, Cecchini M, Samorì P (2011) Self-templating 2D supramolecular networks: a new avenue to reach control over a bilayer formation. Nanoscale 3:4125–4129

    Article  CAS  PubMed  Google Scholar 

  33. Slater AG, Beton PH, Champness NR (2011) Two-dimensional supramolecular chemistry on surfaces. Chem Sci 2:1440–1448

    Article  CAS  Google Scholar 

  34. Korolkov VV, Mullin N, Allen S, Roberts CJ, Hobbs JK, Tendler SJB (2012) The structure and formation of hydrogen-bonded molecular neworks on Au(111) surfaces revealed by scanning tunneling and torsional-tapping atomic force microscopy. Phys Chem Chem Phys 14:15909–15916

    Article  CAS  PubMed  Google Scholar 

  35. Shalom M, Inal S, Fettkenhauer C, Neher D, Antonietti M (2013) Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J Am Chem Soc 135:7118–7121

    Article  CAS  PubMed  Google Scholar 

  36. Lau VW, Mesch MB, Duppel V, Blum V, Senker J, Lotsch BV (2015) Low-molecular-weight carbon nitrides for solar hydrogen evolution. J Am Chem Soc 137:1064–1072

    Article  CAS  PubMed  Google Scholar 

  37. Elemans JAAW, Lei S, Feyter SD (2009) Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew Chem Int Ed 48:7298–7332

    Article  CAS  Google Scholar 

  38. Madueno R, Räisänen MT, Silien C, Buck M (2008) Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature 454:618–621

    Article  CAS  PubMed  Google Scholar 

  39. Tahara K, Inukai K, Adisoejoso J, Yamaga H, Balandina T, Blunt MO, Feyter SD, Tobe Y (2013) Tailoring surface-confined nanoporous with photoresponsive groups. Angew Chem Int Ed 52:8373–8376

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  43. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  44. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  45. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the BARC computer center for providing the high performance parallel computing facility. AS would like to thank UM-DAE-CBS for support and funding. The work of SKG is supported through Raja Ramanna Fellowship grant of DAE, India and Distinguished Professorship of UM-DAE-CBS. We cherish our long association with Prof. Pratim K Chattaraj and dedicate this work on the occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Ghosh.

Additional information

Dedicated to Prof. Pratim K. Chattaraj on the happy occasion of his 60th Birthday

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry, and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, A., Kancharlapalli, S. & Ghosh, S.K. Exploring triazine and heptazine based self assembled molecular materials through first principles investigations. J Mol Model 24, 217 (2018). https://doi.org/10.1007/s00894-018-3741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3741-5

Keywords

Navigation