Skip to main content
Log in

Mutations in catalase-peroxidase KatG from isoniazid resistant Mycobacterium tuberculosis clinical isolates: insights from molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The current multidrug therapy for tuberculosis (TB) is based on the use of isoniazid (INH) in combination with other antibiotics such as rifampin, ethambutol and pyrazinamide. Literature reports have shown that Mycobacterium tuberculosis, the causative agent of TB, has become resistant to this treatment by means of point mutations in the target enzymes of these drugs, such as catalase-peroxidase (KatG). By means of equilibrium molecular dynamics in the presence of the ligand, this work evaluated ten point mutations described in the enzyme KatG that are related to resistance to INH . The results showed that the resistance mechanism is related to stereochemical modifications at the N-terminal domain of the protein, which restrict INH access to its catalytic site, not involving mechanisms of electrostatic nature. These results show insights that can be useful for the identification of new anti-TB drugs which may be able to circumvent this mechanism of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a–c
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Degen T, Bregenzer T (2016) The treatment of tuberculosis. Praxis (Bern 1994) 105(8):457–461. doi:10.1024/1661-8157/a002322

    Article  Google Scholar 

  2. Johnsson K, King DS, Schultz PG (1995) Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. J Am Chem Soc 117:5009–5010. doi:10.1021/ja00122a038

    Article  CAS  Google Scholar 

  3. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263(5144):227–230

    Article  CAS  Google Scholar 

  4. Conde M, Fiterman J, Lima MA (2012) Tuberculosis - Sociedade Brasileira de Pneumologia e Tisiologia Grupo Gen, Rio de Janeiro

  5. Blanchard JS (1996) Molecular mechanisms of drug resistance in mycobacterium tuberculosis. Annu Rev Biochem 65:215–239. doi:10.1146/annurev.bi.65.070196.001243

    Article  CAS  Google Scholar 

  6. da Costa AL, Pauli I, Dorn M, Schroeder EK, Zhan CG, de Souza ON (2012) Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study. J Mol Model 18(5):1779–1790. doi:10.1007/s00894-011-1200-7

    Article  Google Scholar 

  7. Cardoso RF, Cooksey RC, Morlock GP, Barco P, Cecon L, Forestiero F, Leite CQ, Sato DN, Shikama Mde L, Mamizuka EM, Hirata RD, Hirata MH (2004) Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil. Antimicrob Agents Chemother 48(9):3373–3381. doi:10.1128/AAC.48.9.3373-3381.2004

    Article  CAS  Google Scholar 

  8. Kumari R, Kumar R, Lynn A, Consort OSDD (2014) g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962. doi:10.1021/Ci500020m

    Article  CAS  Google Scholar 

  9. Gutierrez-de-Teran H, Aqvist J (2012) Linear interaction energy: method and applications in drug design. Methods Mol Biol 819:305–323. doi:10.1007/978-1-61779-465-0_20

    Article  Google Scholar 

  10. Bertrand T, Eady NA, Jones JN, Jesmin NJM, Jamart-Gregoire B, Raven EL, Brown KA (2004) Crystal structure of mycobacterium tuberculosis catalase-peroxidase. J Biol Chem 279(37):38991–38999. doi:10.1074/jbc.M402382200

    Article  CAS  Google Scholar 

  11. Vidossich P, Loewen PC, Carpena X, Fiorin G, Fita I, Rovira C (2014) Binding of the antitubercular pro-drug isoniazid in the heme access channel of catalase-peroxidase (KatG). a combined structural and metadynamics investigation. J Phys Chem B 118(11):2924–2931. doi:10.1021/jp4123425

    Article  CAS  Google Scholar 

  12. de Beer TA, Berka K, Thornton JM, Laskowski RA (2014) PDBsum additions. Nucleic Acids Res 42:D292–296. doi:10.1093/nar/gkt940

    Article  Google Scholar 

  13. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126–2132. doi:10.1107/S0907444904019158

    Article  Google Scholar 

  14. Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27(23):3276–3285. doi:10.1093/bioinformatics/btr550

    Article  CAS  Google Scholar 

  15. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  Google Scholar 

  16. Mackerell AD Jr, Feig M, Brooks CL 3rd (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415. doi:10.1002/jcc.20065

    Article  CAS  Google Scholar 

  17. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) Swiss Param: a fast force field generation tool for small organic molecules. J Comput Chem 32(11):2359–2368. doi:10.1002/jcc.21816

    Article  CAS  Google Scholar 

  18. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev: Comput Mol Sci 2(1):73–78. doi:10.1002/wcms.81

    CAS  Google Scholar 

  19. Seixas FA, Santini TD, Moura VP, Gandra EA (2008) Evaluation of the (haem)Fe--Nepsilon(2)(HisF8) bond distances from haemoglobin structures deposited in the protein data bank. Acta Crystallogr D Biol Crystallogr 64(Pt 9):971–976. doi:10.1107/S0907444908022208

    Article  CAS  Google Scholar 

  20. Pacheco Homem D, Flores R Jr, Tosqui P, de Castro RT, Abicht Basso E, Gasparotto A Jr, Augusto Vicente Seixas F (2013) Homology modeling of dihydrofolate reductase from T. gondii bonded to antagonists: molecular docking and molecular dynamics simulations. Mol Biosyst 9(6):1308–1315. doi:10.1039/c3mb25530a

    Article  Google Scholar 

  21. Jeeves RE, Marriott AA, Pullan ST, Hatch KA, Allnutt JC, Freire-Martin I, Hendon-Dunn CL, Watson R, Witney AA, Tyler RH, Arnold C, Marsh PD, McHugh TD, Bacon J (2015) Mycobacterium tuberculosis is resistant to isoniazid at a slow growth rate by single nucleotide polymorphisms in katG codon Ser315. PLoS One 10(9), e0138253. doi:10.1371/journal.pone.0138253

    Article  Google Scholar 

  22. Unissa AN, Selvakumar N, Narayanan S, Suganthi C, Hanna LE (2015) Investigation of Ser315 substitutions within katG gene in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from south India. Biomed Res Int 2015:257983. doi:10.1155/2015/257983

    Article  Google Scholar 

  23. Zhao X, Hersleth HP, Zhu J, Andersson KK, Magliozzo RS (2013) Access channel residues Ser315 and Asp137 in Mycobacterium tuberculosis catalase-peroxidase (KatG) control peroxidatic activation of the pro-drug isoniazid. Chem Commun (Camb) 49(99):11650–11652. doi:10.1039/c3cc47022a

    Article  CAS  Google Scholar 

  24. Suarez J, Ranguelova K, Schelvis JP, Magliozzo RS (2009) Antibiotic resistance in Mycobacterium tuberculosis: peroxidase intermediate bypass causes poor isoniazid activation by the S315G mutant of M. tuberculosis catalase-peroxidase (KatG). J Biol Chem 284(24):16146–16155. doi:10.1074/jbc.M109.005546

    Article  CAS  Google Scholar 

  25. Zhao X, Yu H, Yu S, Wang F, Sacchettini JC, Magliozzo RS (2006) Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry 45(13):4131–4140. doi:10.1021/bi051967o

    Article  CAS  Google Scholar 

  26. Purohit R, Rajendran V, Sethumadhavan R (2011) Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and isoniazid susceptibility: an in silico analysis. J Mol Model 17(4):869–877. doi:10.1007/s00894-010-0785-6

    Article  CAS  Google Scholar 

  27. van Doorn HR, Kuijper EJ, van der Ende A, Welten AG, van Soolingen D, de Haas PE, Dankert J (2001) The susceptibility of Mycobacterium tuberculosis to isoniazid and the Arg--Leu mutation at codon 463 of katG are not associated. J Clin Microbiol 39(4):1591–1594. doi:10.1128/JCM.39.4.1591-1594.2001

    Article  Google Scholar 

  28. Rodrigues L, Machado D, Couto I, Amaral L, Viveiros M (2012) Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Infect Genet Evol 12(4):695–700. doi:10.1016/j.meegid.2011.08.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Fundação Araucária (convênio 147/14), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Centro Nacional de Processamento de Alto Desempenho-Sao Paulo (CENAPAD-SP) (proj512) and Laboratório Nacional de Computação Científica (LNCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Augusto Vicente Seixas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimentel, A.L., de Lima Scodro, R.B., Caleffi-Ferracioli, K.R. et al. Mutations in catalase-peroxidase KatG from isoniazid resistant Mycobacterium tuberculosis clinical isolates: insights from molecular dynamics simulations. J Mol Model 23, 121 (2017). https://doi.org/10.1007/s00894-017-3290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3290-3

Keywords

Navigation