Skip to main content
Log in

Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

InhA, the NADH-dependent 2-trans-enoyl-ACP reductase enzyme from Mycobacterium tuberculosis (MTB), is involved in the biosynthesis of mycolic acids, the hallmark of mycobacterial cell wall. InhA has been shown to be the primary target of isoniazid (INH), one of the oldest synthetic antitubercular drugs. INH is a prodrug which is biologically activated by the MTB catalase-peroxidase KatG enzyme. The activation reaction promotes the formation of an isonicotinyl-NAD adduct which inhibits the InhA enzyme, resulting in reduction of mycolic acid biosynthesis. As a result of rational drug design efforts to design alternative drugs capable of inhibiting MTB’s InhA, the inorganic complex pentacyano(isoniazid)ferrate(II) (PIF) was developed. PIF inhibited both wild-type and INH-resistant Ile21Val mutants of InhA and this inactivation did not require activation by KatG. Since no three-dimensional structure of the InhA-PIF complex is available to confirm the binding mode and to assess the molecular interactions with the protein active site residues, here we report the results of molecular dynamics simulations of PIF interaction with InhA. We found that PIF strongly interacts with InhA and that these interactions lead to macromolecular instabilities reflected in the long time necessary for simulation convergence. These instabilities were mainly due to perturbation of the substrate binding loop, particularly the partial denaturation of helices α6 and α7. We were also able to correlate the changes in the SASAs of Trp residues with the recent spectrofluorimetric investigation of the InhA-PIF complex and confirm their suggestion that the changes in fluorescence are due to InhA conformational changes upon PIF binding. The InhA-PIF association is very strong in the first 20.0 ns, but becomes very week at the end of the simulation, suggesting that the PIF binding mode we simulated may not reflect that of the actual InhA-PIF complex.

Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schaeffer ML, Agnihotri G, Volke C, Kallender H, Brennan BJ, Lonsdale JTI (2001) Purification and biochemical characterization of the Mycobacterium tuberculosis beta-Ketoacyl-Acyl Carrier Protein Synthases KasA and KasB. J Biol Chem 276:47029–47037

    Article  CAS  Google Scholar 

  2. Ratledge C (1982) The biology of mycobacteria. Academic Press, San Diego

    Google Scholar 

  3. Takayama K, Qureshi N (1982) In: Kubica GP, Wayne LG (eds) The mycobacteria: a sourcebook. Marcel Dekker, New York

    Google Scholar 

  4. Schroeder EK, Norberto de Souza O, Santos DS, Blanchard JS, Basso LA (2002) Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr Pharm Biotech 3:197–225

    Article  CAS  Google Scholar 

  5. Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Pan X, Mead D, Crane DD, Musser JM, Barry CE III (1998) Inhibition of a Mycobacterium tuberculosis beta-Ketoacyl ACP Synthase by Isoniazid. Science 280:1607–1610

    Article  CAS  Google Scholar 

  6. Chatterjee D (1997) The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr Opin Chem Biol 4:579–588

    Article  Google Scholar 

  7. Quémard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR, Blanchard JS (1995) Enzymic characterization of the target for Isoniazid in Mycobacterium tuberculosis. Biochemistry 34:8235–8241

    Article  Google Scholar 

  8. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230

    Article  CAS  Google Scholar 

  9. Lavender C, Globan M, Sievers A, Jacobe HB, Fyfe J (2005) Molecular characterization of Isoniazid-resistant Mycobacterium tuberculosis isolates collected in Australia. Antimicrob Agents Chemother 49:4068–4074

    Article  CAS  Google Scholar 

  10. Johnsson K, King DS, Schultz PG (1995) Studies on the mechanism of action of Isoniazid and Ethionamide in the chemotherapy of tuberculosis. J Am Chem Soc 117:009–5010

    Google Scholar 

  11. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593

    Article  CAS  Google Scholar 

  12. Baker LV, Brown TJ, Maxwell O, Gibson AL, Fang Z, Yates MD, Drobniewski FA (2005) Molecular analysis of Isoniazid-resistant Mycobacterium tuberculosis isolates from England and Wales reveals the phylogenetic significance of the ahpC-46A polymorphism. Antimicrob Agents Chemother 49:1455–1464

    Article  CAS  Google Scholar 

  13. Zhang Y, Garcia MJ, Lathigra R, Allen B, Moreno C, van Embden JD, Young D (1992) Alterations in the superoxide dismutase gene of an isoniazid-resistant strain of Mycobacterium tuberculosis. Infect Immun 60:2160–2165

    CAS  Google Scholar 

  14. Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667

    Article  CAS  Google Scholar 

  15. Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, Locht C, Besra GS (2000) Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275:28326–28331

    CAS  Google Scholar 

  16. DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE 3rd (2000) Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97:9677–9682

    Article  CAS  Google Scholar 

  17. Vannelli TA, Dykman A, Ortiz de Montellano PR (2002) The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem 277:12824–12829

    Article  CAS  Google Scholar 

  18. Vilcheze C, Wang F, Arai M, Hazbón MH, Colangeli R, Kremer L, Weisbrod TR, Alland D, Sacchettini JC, Jacobs WR (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12:1027–1029

    Article  CAS  Google Scholar 

  19. Nguyena M, Quemard A, Marrakchi H, Bernadou J, Meunier B (2001) The nonenzymatic activation of isoniazid by MnIII-pyrophosphate in the presence of NADH produces the inhibition of the enoyl-ACP reductase InhA from Mycobacterium tuberculosis. Comptes Rendus del'Académie des Sciences – Series IIC –. Chemistry 4:35–40

    Google Scholar 

  20. Jia L, Tomaszewski JE, Hanrahan C, Coward L, Noker P, Gorman G, Nikonenko B, Protopopova M (2005) Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol 144:80–87

    Article  CAS  Google Scholar 

  21. Sullivan TJ, Truglio JJ, Boyne ME, Novichenok P, Zhang X, Stratton CF, Li HJ, Kaur T, Amin A, Johnson F, Slayden RA, Kisker C, Tonge PJ (2006) High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol 1:43–53

    Article  CAS  Google Scholar 

  22. He X, Alian A, Ortiz de Montellano PR (2007) Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg Med Chem 15:6649–6658

    Article  CAS  Google Scholar 

  23. Kuo MR, Morbidoni HR, Alland D, Sneddon SF, Gourlie BB, Staveski MM, Leonard M, Gregory JS, Janjigian AD, Yee C, Musser JM, Kreiswirth B, Iwamoto H, Perozzo R, Jacobs WR , Sacchettini JC, Fidock DA (2003) Targeting tuberculosis and malaria through inhibition of Enoyl Reductase: compound activity and structural data. J Biol Chem 278:20851–20859

    Article  CAS  Google Scholar 

  24. Zhang Y, Post-Martens K, Denkin S (2006) New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov Today 11:21–27

    Article  CAS  Google Scholar 

  25. Wang F, Langley R, Gulten G, Dover Lynn G, Besra GS, Jacobs WR, Sacchettini JC (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78

    Article  CAS  Google Scholar 

  26. Oliveira JS, Souza EHS, Basso LA, Palaci M, Dietze R, Santos DS, Moreira IS (2004) An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Chem Commun 3:312–313

    Article  Google Scholar 

  27. Oliveira JS, Souza EHS, Norberto de Souza O, Moreira IS, Santos DS, Basso LA (2006) Slow-Onset Inhibition of 2-trans-Enoyl-ACP (CoA) Reductase from Mycobacterium tuberculosis by an inorganic complex. Curr Pharm Design 12:2409–2424

    Article  CAS  Google Scholar 

  28. Vasconcelos I, Meyer E, Sales FAM, Moreira IS, Santos DS (2008) The mode of inhibition of Mycobacterium tuberculosis wild-type and Isoniazid-resistant 2-trans-Enoyl-ACP(CoA) Reductase enzymes by an inorganic complex. Anti-Inf Ag Med Chem 7:50–62

    CAS  Google Scholar 

  29. Basso LA, Schneider CZ, dos Santos AJAB, dos Santos AA, Campos MM, Souto AA, Santos DS (2010) An inorganic complex that inhibits Mycobacterium tuberculosis enoyl reductase as a prototype of a new class of chemotherapeutic agents to treat tuberculosis. J Braz Chem Soc 00:1–6

    Google Scholar 

  30. Dessen A, Quémard A, Blanchard JS, Jacobs WR, Sacchettini JC (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:1638–1641

    Article  CAS  Google Scholar 

  31. Schroeder EK, Basso LA, Santos DS, Norberto de Souza O (2005) Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Biophys J 89:876–884

    Article  CAS  Google Scholar 

  32. Oliveira JS, Pereira JH, Canduri F, Rodrigues NC, Norberto de Souza O, de Azevedo WF, Basso LA, Santos DS (2006) Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and Isoniazid-resistant Enoyl-ACP(CoA) Reductase enzymes from Mycobacterium tuberculosis. J Mol Biol 359:646–666

    Article  CAS  Google Scholar 

  33. Cheatham III TE, Brooks BR (1998) Recent advances in molecular dynamics simulation towards the realistic representation of biomolecules in solution. Theor Chem Acc 99:279–288

    Google Scholar 

  34. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  CAS  Google Scholar 

  35. Karplus M, Kuriyan J (2005) Chemical theory and computation special feature: molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685

    Article  CAS  Google Scholar 

  36. Nyarady Z, Czompoly T, Bosze S, Nagy G, Petrohai A, Pál J, Hudecz F, Berki T, Németh P (2006) Validation of in silico prediction by in vitro immunoserological results of fine epitope mapping on citrate synthase specific autoantibodies. Mol Immunol 43:830–838

    Article  CAS  Google Scholar 

  37. Quémard A, Sacchettini JC, Dessen A, Vilchèze C, Bittman R, Jacobs WR , Blanchard JS (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34:8235–8241

    Article  Google Scholar 

  38. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation Force Field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  40. Norberto de Souza O, Ornstein RL (1997) Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method. Biophys J 72:2395–2397

    Article  CAS  Google Scholar 

  41. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  42. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  43. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  44. Norberto de Souza O, Ornstein RL (1999) Molecular dynamics simulations of a protein-protein dimmer: particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. J Biomol Struct Dyn 16:1205–1218

    CAS  Google Scholar 

  45. Roe DR, Okur A, Wickstrom L, Hornak V, Simmerling C (2007) Secondary structure bias in generalized born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit salvation. J Phys Chem B 111:1846–1857

    Article  CAS  Google Scholar 

  46. Maiorov VN, Crippen GM (1994) Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 235:625–634

    Article  CAS  Google Scholar 

  47. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  49. Kaplan W, Littlejohn TG (2001) Swiss-PDB Viewer (Deep View). Brief Bioinform 2:195–197

    Article  CAS  Google Scholar 

  50. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA, USA

    Google Scholar 

  51. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  CAS  Google Scholar 

  52. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  CAS  Google Scholar 

  53. Hutchinson G, Thornton (1996) JM PROMOTIF-A program to identify and analyze structural motifs in proteins. Protein Sci 5:212–220

    Article  CAS  Google Scholar 

  54. Hubbard SJ, Thornton JM (1993) NACCESS, Computer Program. Department of Biochemistry and Molecular Biology. University College London

  55. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  56. Rossmann MG, Liljas A, Branden CI, Banaszak LJ (1975) In: Boyer PD (ed) Evolutionary and structural relationships among dehydrogenases. The Enzymes, 3rd edn. Academic, New York, pp 61–102

    Google Scholar 

  57. Jornvall H, Persson B, Krook M, Atrian S, Gonzalez RD, Jeffery J, Ghosh D (1995) Shortchain dehydrogenases/reductases (SDR). Biochemistry 18:6003–6013

    Article  Google Scholar 

  58. Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H (2003) Short-chain dehydrogenase/reductases (SDR): the 2002 update. Chem Biol Interact 143:247–253

    Article  Google Scholar 

  59. Chen Y, Barkley MD (1998) Toward understanding Tryptophan fluorescence in proteins. Biochemistry 37:9976–9982

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Luís Fernando Saraiva Macedo Timmers for his technical assistance. We thank the Laboratório de Alto Desempenho (LAD), at Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), for CPU time. This project was supported all or in part by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Ministério da Ciência e Tecnologia (MCT) – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – Departamento de Ciência e Tecnologia (DECIT), (Processes numbers 410505/2006-4, 554782/2008-1, 302641/2009-2, 551209/2010-0, 559917/2010-4) to Osmar Norberto de Souza and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB) – CNPq to Prof. Diógenes Santiago Santos and Programa de Apoio a Núcleos de Excelência 2009/FAPERGS to Prof. Luiz Augusto Basso. André L. P. da Costa was partially supported by a CAPES M.Sc. scholarship. Ivani Pauli was supported by a CAPES M.Sc scholarship. Márcio Dorn was supported by a CNPq M.Sc. scholarship. Osmar Norberto de Souza is a CNPq Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osmar Norberto de Souza.

Additional information

André L. P. da Costa and Ivani Pauli contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa, A.L.P., Pauli, I., Dorn, M. et al. Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study. J Mol Model 18, 1779–1790 (2012). https://doi.org/10.1007/s00894-011-1200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1200-7

Keywords

Navigation