Skip to main content

Advertisement

Log in

Identification of microorganisms in irreversible pulpitis and primary endodontic infections with respect to clinical and radiographic findings

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to evaluate the composition of microbiota of irreversible pulpitis and primary endodontic infections with respect to clinical and radiographic findings by performing cultures and 16s rDNA sequencing in Iranian patients.

Material and methods

In this prospective cross-sectional study, samples were collected from 41 root canals for 4 main groups of patients. Bacterial identification was performed by the polymerase chain reaction (PCR) and 16s rDNA sequencing of aerobic and anaerobic cultivable colonies taken from patients’ culture plates. Additionally, the presence of 13 bacterial species and 3 nonbacterial species was also explored using PCR and species-specific primers.

Results

Sixteen microbial species, 1 fungus (Candida albicans), and 1 virus (Herpes simplex virus) were discovered and isolated. Species with the highest prevalence were Dialister invisus (68.3%), Porphyromonas gingivalis (58.8%), Streptococcus salivarius (58.5%), and Treponema denticola (56.1%). Lysinibacillus fusiformis (19.1%) was detected in the root canals for the first time. Candida albicans was seen in 11 cases (26.8%). Herpes simplex virus (HSV) was seen in 4 patients (9.8%).

Conclusions

Our results suggest that Gram-negative anaerobic oral bacteria are the majority of the microbes in primary endodontic infections. Various combinations of bacterial species were related to different clinical and radiographic conditions. Lysinibacillus fusiformis was detected for the first time in primary endodontic infections.

Clinical relevance

The results of this investigation might help clinicians choose to identify suspected endodontic pathogens in the etiology of each form of pulpal and periradicular diseases to determine the best therapeutic measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kakehashi S, Stanley HR, Fitzgerald RJ (1965) The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surgery, Oral Medicine, Oral Pathology 20:340–349. https://doi.org/10.1016/0030-4220(65)90166-0

    Article  PubMed  Google Scholar 

  2. Möller ÅJR, Fabricius L, Dahlén G, Öhman AE, Heyden G (1981) Influence on periapical tissues of indigenous oral bacteria and necrotic pulp tissue in monkeys. European Journal of Oral Sciences 89:475–484. https://doi.org/10.1111/j.1600-0722.1981.tb01711.x

    Article  Google Scholar 

  3. Siqueira JF Jr, Rocas IN (2009) Community as the unit of pathogenicity: an emerging concept as to the microbial pathogenesis of apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:870–878. https://doi.org/10.1016/j.tripleo.2009.01.044

    Article  PubMed  Google Scholar 

  4. Cvek M, Cleaton-Jones PE, Austin JC, Andreasen JO (1982) Pulp reactions to exposure after experimental crown fractures or grinding in adult monkeys. J Endod 8:391–397. https://doi.org/10.1016/S0099-2399(82)80092-7

    Article  PubMed  Google Scholar 

  5. Gomes BPFA, Pinheiro ET, Gadê-Neto CR, Sousa ELR, Ferraz CCR, Zaia AA, Teixeira FB, Souza-Filho FJ (2004) Microbiological examination of infected dental root canals. Oral Microbiol Immunol 19:71–76. https://doi.org/10.1046/j.0902-0055.2003.00116.x

    Article  PubMed  Google Scholar 

  6. Parahitiyawa NB, Scully C, Leung WK, Yam WC, Jin LJ, Samaranayake LP (2010) Exploring the oral bacterial flora: current status and future directions. Oral Dis 16:136–145. https://doi.org/10.1111/j.1601-0825.2009.01607.x

    Article  PubMed  Google Scholar 

  7. Shin JM, Luo T, Lee KH, Guerreiro D, Botero TM, McDonald NJ, Rickard AH (2018) Deciphering endodontic microbial communities by next-generation sequencing. J Endod 44:1080–1087. https://doi.org/10.1016/j.joen.2018.04.003

    Article  PubMed  Google Scholar 

  8. Siqueira JF, Rôças IN, Alves FRF, Santos KRN (2004) Selected endodontic pathogens in the apical third of infected root canals: a molecular investigation. J Endod 30:638–643. https://doi.org/10.1097/01.DON.0000125875.88377.85

    Article  PubMed  Google Scholar 

  9. Hong B-Y, Lee T-K, Lim S-M, Chang SW, Park J, Han SH, Zhu Q, Safavi KE, Fouad AF, Kum KY (2013) Microbial analysis in primary and persistent endodontic infections by using pyrosequencing. J Endod 39: 1136-1140. https://doi.org/10.1016/j.joen.2013.05.001

    Article  PubMed  Google Scholar 

  10. Tennert C, Fuhrmann M, Wittmer A, Karygianni L, Altenburger MJ, Pelz K, Hellwig E, Al-Ahmad A (2014) New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings. J Endod 40:670–677. https://doi.org/10.1016/j.joen.2013.10.005

    Article  PubMed  Google Scholar 

  11. Nair PNR (1997) Apical periodontitis: a dynamic encounter between root canal infection and host response. Periodontology 2000(13):121–148. https://doi.org/10.1111/j.1600-0757.1997.tb00098.x

    Article  Google Scholar 

  12. Lysakowska ME, Ciebiada-Adamiec A, Sienkiewicz M, Sokolowski J, Banaszek K (2016) The cultivable microbiota of primary and secondary infected root canals, their susceptibility to antibiotics and association with the signs and symptoms of infection. Int Endod J 49:422–430. https://doi.org/10.1111/iej.12469

    Article  PubMed  Google Scholar 

  13. Sassone LM, Fidel RA, Faveri M, Guerra R, Figueiredo L, Fidel SR, Feres M (2008) A microbiological profile of symptomatic teeth with primary endodontic infections. J Endod 34: 541-545. https://doi.org/10.1016/j.joen.2008.02.004

    Article  PubMed  Google Scholar 

  14. Rocas IN, Siqueira JF Jr, Debelian GJ (2011) Analysis of symptomatic and asymptomatic primary root canal infections in adult Norwegian patients. J Endod 37:1206–1212. https://doi.org/10.1016/j.joen.2011.05.026

    Article  PubMed  Google Scholar 

  15. Zheng J, Wu Z, Niu K, Xie Y, Hu X, Fu J, Tian D, Fu K, Zhao B, Kong W, Sun C, Wu L (2019) Microbiome of deep dentinal caries from reversible pulpitis to irreversible pulpitis. J Endod 45:302–309.e301. https://doi.org/10.1016/j.joen.2018.11.017

    Article  PubMed  Google Scholar 

  16. Martinho FC, Leite FR, Nascimento GG, Cirelli JA, Gomes BP (2014) Clinical investigation of bacterial species and endotoxin in endodontic infection and evaluation of root canal content activity against macrophages by cytokine production. Clin Oral Investig 18:2095–2102. https://doi.org/10.1007/s00784-014-1198-1

    Article  PubMed  Google Scholar 

  17. Siqueira JF, Rôças IN, Souto R, Md U, Colombo AP (2000) Checkerboard DNA-DNA hybridization analysis of endodontic infections. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 89:744–748. https://doi.org/10.1067/moe.2000.106576

    Article  PubMed  Google Scholar 

  18. Fouad AF, Barry J, Caimano M, Clawson M, Zhu Q, Carver R, Hazlett K, Radolf JD (2002) PCR-based identification of bacteria associated with endodontic infections. J Clin Microbiol 40:3223–3231. https://doi.org/10.1128/jcm.40.9.3223-3231.2002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ribeiro AC, Matarazzo F, Faveri M, Zezell DM, Mayer MPA (2011) Exploring bacterial diversity of endodontic microbiota by cloning and sequencing 16S rRNA. J Endod 37: 922-926. https://doi.org/10.1016/j.joen.2011.04.007

    Article  PubMed  Google Scholar 

  20. Siqueira JF, Rôças IN (2005) Uncultivated phylotypes and newly named species associated with primary and persistent endodontic infections. J Clin Microbiol 43:3314. https://doi.org/10.1128/JCM.43.7.3314-3319.2005

    Article  PubMed  PubMed Central  Google Scholar 

  21. Foschi F, Cavrini F, Montebugnoli L, Stashenko P, Sambri V, Prati C (2005) Detection of bacteria in endodontic samples by polymerase chain reaction assays and association with defined clinical signs in Italian patients. Oral Microbiol Immunol 20:289–295. https://doi.org/10.1111/j.1399-302X.2005.00227.x

    Article  PubMed  Google Scholar 

  22. Sassone L, Fidel R, Figueiredo L, Fidel S, Faveri M, Feres M (2007) Evaluation of the microbiota of primary endodontic infections using checkerboard DNA–DNA hybridization. Oral Microbiol Immunol 22:390–397. https://doi.org/10.1111/j.1399-302X.2007.00376.x

    Article  PubMed  Google Scholar 

  23. Blome B, Braun A, Sobarzo V, Jepsen S (2008) Molecular identification and quantification of bacteria from endodontic infections using real-time polymerase chain reaction. Oral Microbiol Immunol 23:384–390. https://doi.org/10.1111/j.1399-302X.2008.00440.x

    Article  PubMed  Google Scholar 

  24. Eleazer P, Glickman G, McClanahan S, Webb T, Jusrman B (2012) Glossary of endodontic terms. Editorial AAE, Chicago

    Google Scholar 

  25. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ (2003) New bacterial species associated with chronic periodontitis. J Dent Res 82:338–344. https://doi.org/10.1177/154405910308200503

    Article  PubMed  Google Scholar 

  26. Brinig MM, Lepp PW, Ouverney CC, Armitage GC, Relman DA (2003) Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol 69:1687–1694. https://doi.org/10.1128/aem.69.3.1687-1694.2003

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baumgartner JC, Siqueira JF Jr, Xia T, Rocas IN (2004) Geographical differences in bacteria detected in endodontic infections using polymerase chain reaction. J Endod 30:141–144. https://doi.org/10.1097/00004770-200403000-00004

    Article  PubMed  Google Scholar 

  29. Siqueira JF, Jung IY, Rocas IN, Lee CY (2005) Differences in prevalence of selected bacterial species in primary endodontic infections from two distinct geographic locations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:641–647. https://doi.org/10.1016/j.tripleo.2004.07.009

    Article  PubMed  Google Scholar 

  30. Siqueira JF Jr, Rocas IN (2007) Bacterial pathogenesis and mediators in apical periodontitis. Braz Dent J 18:267–280. https://doi.org/10.1590/S0103-64402007000400001

    Article  PubMed  Google Scholar 

  31. Kovacevic M, Tamarut T, Jonjic N, Braut A, Kovacevic M (2008) The transition from pulpitis to periapical periodontitis in dogs’ teeth. Aust Endod J 34:12–18. https://doi.org/10.1111/j.1747-4477.2008.00120.x

    Article  PubMed  Google Scholar 

  32. Kimberly CL, Byers MR (1988) Inflammation of rat molar pulp and periodontium causes increased calcitonin gene-related peptide and axonal sprouting. Anat Rec 222:289–300. https://doi.org/10.1002/ar.1092220310

    Article  PubMed  Google Scholar 

  33. SMdF L, de Pádua GM, MGdC S, MdS F, Franco OL, TMB R (2015) Antimicrobial peptide-based treatment for endodontic infections—biotechnological innovation in endodontics. Biotechnology Advances 33:203–213. https://doi.org/10.1016/j.biotechadv.2014.10.013

    Article  Google Scholar 

  34. Widmer C, Skutas J, Easson C, Lopez JV, Torneck C, Flax M, Sayin TC (2018) Culture-independent characterization of the microbiome of healthy pulp. J Endod 44:1132–1139.e1132. https://doi.org/10.1016/j.joen.2018.03.009

    Article  PubMed  Google Scholar 

  35. Akpata ES (1974) Total viable count of microorganisms in the infected dental pulp. J Dent Res 53:1330–1333. https://doi.org/10.1177/00220345740530060501

    Article  PubMed  Google Scholar 

  36. Pattanshetty S, Kotrashetti VS, Bhat K, Nayak RS, Somannavar P, Pujar M (2018) Multiplex polymerase chain reaction detection of selected bacterial species from symptomatic and asymptomatic non-vital teeth with primary endodontic infections. J Investig Clin Dent. https://doi.org/10.1111/jicd.12312

    Article  PubMed  Google Scholar 

  37. Sassone LM, Fidel RA, Faveri M, Figueiredo L, Fidel SR, Feres M (2012) A microbiological profile of unexposed and exposed pulp space of primary endodontic infections by checkerboard DNA-DNA hybridization. J Endod 38:889–893. https://doi.org/10.1016/j.joen.2012.03.021

    Article  PubMed  Google Scholar 

  38. Machado de Oliveira JC, Gama TG, Siqueira JF Jr, Rocas IN, Peixoto RS, Rosado AS (2007) On the use of denaturing gradient gel electrophoresis approach for bacterial identification in endodontic infections. Clin Oral Investig 11:127–132. https://doi.org/10.1007/s00784-006-0085-9

    Article  PubMed  Google Scholar 

  39. Dhandapani P, MuraliKannan M, Anandkumar B, Maruthamuthu S, Manoharan SP (2014) Electrochemistry of calcium precipitating bacteria in orthodontic wire. Int J Oral Sci 11:22–29. https://doi.org/10.1016/S1348-8643(13)00026-8

    Article  Google Scholar 

  40. Anderson AC, Hellwig E, Vespermann R, Wittmer A, Schmid M, Karygianni L, Al-Ahmad A (2012) Comprehensive analysis of secondary dental root canal infections: a combination of culture and culture-independent approaches reveals new insights. PLOS ONE 7:e49576. https://doi.org/10.1371/journal.pone.0049576

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hahn CL, Falkler WA, Minah GE (1991) Microbiological studies of carious dentine from human teeth with irreversible pulpitis. Arch Oral Biol 36:147–153. https://doi.org/10.1016/0003-9969(91)90077-8

    Article  PubMed  Google Scholar 

  42. Martin FE, Nadkarni MA, Jacques NA, Hunter N (2002) Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis. J Clin Microbiol 40:1698–1704. https://doi.org/10.1128/jcm.40.5.1698-1704.2002

    Article  PubMed  PubMed Central  Google Scholar 

  43. Martin FE (2003) Carious pulpitis: microbiological and histopathological considerations. Australian Endodontic Journal 29:134–137. https://doi.org/10.1111/j.1747-4477.2003.tb00538.x

    Article  PubMed  Google Scholar 

  44. van Winkelhoff AJ, van Steenbergen TJM, de Graaff J (1988) The role of black-pigmented Bacteroides in human oral infections. J Clin Periodontol 15:145–155. https://doi.org/10.1111/j.1600-051X.1988.tb01561.x

    Article  PubMed  Google Scholar 

  45. de Souza CAS, Teles RP, Souto R, Chaves MAE, Colombo APV (2005) Endodontic therapy associated with calcium hydroxide as an intracanal dressing: microbiologic evaluation by the checkerboard DNA-DNA hybridization technique. J Endod 31:79–83. https://doi.org/10.1097/01.DON.0000133157.60731.3F

    Article  PubMed  Google Scholar 

  46. Rôças IN, Alves FRF, Santos AL, Rosado AS, Siqueira Jr JF (2010) Apical root canal microbiota as determined by reverse-capture checkerboard analysis of cryogenically ground root samples from teeth with apical periodontitis. J Endod 36: 1617-1621. https://doi.org/10.1016/j.joen.2010.07.001

    Article  PubMed  Google Scholar 

  47. Siqueira JF Jr, Rocas IN (2003) Bacteroides forsythus in primary endodontic infections as detected by nested PCR. J Endod 29:390–393. https://doi.org/10.1097/00004770-200306000-00002

    Article  PubMed  Google Scholar 

  48. Conrads G, Gharbia SE, Gulabivala K, Lampert F, Shah HN (1997) The use of a 16s rDNA directed PCR for the detection of endodontopathogenic bacteria. J Endod 23:433–438. https://doi.org/10.1016/s0099-2399(97)80297-x

    Article  PubMed  Google Scholar 

  49. Rocas IN, Siqueira JF Jr, Santos KR, Coelho AM (2001) “Red complex” (Bacteroides forsythus, Porphyromonas gingivalis, and Treponema denticola) in endodontic infections: a molecular approach. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91:468–471. https://doi.org/10.1067/moe.2001.114379

    Article  PubMed  Google Scholar 

  50. Gomes BP, Montagner F, Jacinto RC, Zaia AA, Ferraz CC, Souza-Filho FJ (2007) Polymerase chain reaction of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in primary endodontic infections. J Endod 33:1049–1052. https://doi.org/10.1016/j.joen.2007.05.017

    Article  PubMed  Google Scholar 

  51. Gomes B, Herrera DR (2018) Etiologic role of root canal infection in apical periodontitis and its relationship with clinical symptomatology. Braz Oral Res 32:e69. https://doi.org/10.1590/1807-3107bor-2018.vol32.0069

    Article  PubMed  Google Scholar 

  52. Fabricious L, Dahlen G, Öhman AE, Möller AJR (1982) Predominant indigenous oral bacteria isolated from infected root canals after varied times of closure. European Journal of Oral Sciences 90:134–144. https://doi.org/10.1111/j.1600-0722.1982.tb01536.x

    Article  Google Scholar 

  53. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670. https://doi.org/10.1128/mmbr.00024-07

    Article  PubMed  PubMed Central  Google Scholar 

  54. Persoon IF, Buijs MJ, Ozok AR, Crielaard W, Krom BP, Zaura E, Brandt BW (2017) The mycobiome of root canal infections is correlated to the bacteriome. Clin Oral Investig 21:1871–1881. https://doi.org/10.1007/s00784-016-1980-3

    Article  PubMed  Google Scholar 

  55. Baumgartner JC, Watts CM, Xia T (2000) Occurrence of Candida albicans in infections of endodontic origin. J Endod 26:695–698. https://doi.org/10.1097/00004770-200012000-00003

    Article  PubMed  Google Scholar 

  56. Li H, Chen V, Chen Y, Baumgartner JC, Machida CA (2009) Herpesviruses in endodontic pathoses: association of Epstein-Barr virus with irreversible pulpitis and apical periodontitis. J Endod 35: 23-29. https://doi.org/10.1016/j.joen.2008.09.017

    Article  PubMed  Google Scholar 

  57. Sabeti M, Valles Y, Nowzari H, Simon JH, Kermani-Arab V, Slots J (2003) Cytomegalovirus and Epstein–Barr virus DNA transcription in endodontic symptomatic lesions. Oral Microbiol Immunol 18:104–108. https://doi.org/10.1034/j.1399-302X.2003.00055.x

    Article  PubMed  Google Scholar 

  58. Sabeti M, Slots J (2004) Herpesviral-bacterial coinfection in periapical pathosis. J Endod 30:69–72. https://doi.org/10.1097/00004770-200402000-00001

    Article  PubMed  Google Scholar 

  59. Slots J (2011) Herpesvirus periodontitis: infection beyond biofilm. J Calif Dent Assoc 39:393–399

    PubMed  Google Scholar 

  60. Zhong S, Naqvi A, Bair E, Nares S, Khan AA (2017) Viral microRNAs identified in human dental pulp. J Endod 43:84–89. https://doi.org/10.1016/j.joen.2016.10.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Vice Dean of Research, School of Dentistry, Shahid Beheshti University of Medical sciences, Tehran, Iran. The authors claim that there is no conflict of interest related to this study.

Funding

The work was supported by the Vice Dean of Research, School of Dentistry, Shahid Beheshti University of Medical sciences, Tehran, Iran (Funding no. 6210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Aziz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

In this article, all procedures involving human participants were in accordance with the ethical standards of the Research Ethics Committee of Dental Research Center, Shahid Beheshti University of Medical Sciences (IR.SBMU.IRDS.REC.1394.23)

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, N., Ashraf, H., Marashi, S.M.A. et al. Identification of microorganisms in irreversible pulpitis and primary endodontic infections with respect to clinical and radiographic findings. Clin Oral Invest 24, 2099–2108 (2020). https://doi.org/10.1007/s00784-019-03075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-03075-9

Keywords

Navigation