Skip to main content

Advertisement

Log in

Rational design of stapled antimicrobial peptides

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The global increase in antimicrobial drug resistance has dramatically reduced the effectiveness of traditional antibiotics. Structurally diverse antibiotics are urgently needed to combat multiple-resistant bacterial infections. As part of innate immunity, antimicrobial peptides have been recognized as the most promising candidates because they comprise diverse sequences and mechanisms of action and have a relatively low induction rate of resistance. However, because of their low chemical stability, susceptibility to proteases, and high hemolytic effect, their usage is subject to many restrictions. Chemical modifications such as D-amino acid substitution, cyclization, and unnatural amino acid modification have been used to improve the stability of antimicrobial peptides for decades. Among them, a side-chain covalent bridge modification, the so-called stapled peptide, has attracted much attention. The stapled side-chain bridge stabilizes the secondary structure, induces protease resistance, and increases cell penetration and biological activity. Recent progress in computer-aided drug design and artificial intelligence methods has also been used in the design of stapled antimicrobial peptides and has led to the successful discovery of many prospective peptides. This article reviews the possible structure–activity relationships of stapled antimicrobial peptides, the physicochemical properties that influence their activity (such as net charge, hydrophobicity, helicity, and dipole moment), and computer-aided methods of stapled peptide design. Antimicrobial peptides under clinical trial: Pexiganan (NCT01594762, 2012–05–07). Omiganan (NCT02576847, 2015–10–13).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Date availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abdel Monaim SAH, Jad YE, Ramchuran EJ, El-Faham A, Govender T, Kruger HG et al (2016) Lysine scanning of arg10-teixobactin: deciphering the role of hydrophobic and hydrophilic residues. ACS Omega 1(6):1262–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amos ST, Vermeer LS, Ferguson PM, Kozlowska J, Davy M, Bui TT et al (2016) Antimicrobial peptide potency is facilitated by greater conformational flexibility when binding to gram-negative bacterial inner membranes. Sci Rep 6:37639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aumelas A, Mangoni M, Roumestand C, Chiche L, Despaux E, Grassy G et al (1996) Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem 237(3):575–583

    Article  CAS  PubMed  Google Scholar 

  • Avrahami D, Shai Y (2002) Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry 41(7):2254–2263

    Article  CAS  PubMed  Google Scholar 

  • Bagheri M, Arasteh S, Haney EF, Hancock RE (2016) Tryptic stability of synthetic bactenecin derivatives is determined by the side chain length of cationic residues and the peptide conformation. J Med Chem 59(7):3079–3086

    Article  CAS  PubMed  Google Scholar 

  • Bagheri M, Amininasab M, Dathe M (2018) Arginine/tryptophan-rich cyclic alpha/beta-antimicrobial peptides: the roles of hydrogen bonding and hydrophobic/hydrophilic solvent-accessible surface areas upon activity and membrane selectivity. Chemistry 24(53):14242–14253

    Article  CAS  PubMed  Google Scholar 

  • Baig HM, Ahmad K, Roy S, Ashraf MJ, Adil M, Siddiqui HM et al (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22(5):572–581

    Article  CAS  PubMed  Google Scholar 

  • Balaram P (1992) Non-standard amino acids in peptide design and protein engineering. Curr Opin Struct Biol 2(6):845–851

    Article  CAS  Google Scholar 

  • Banegas-Luna AJ, Ceron-Carrasco JP, Perez-Sanchez H (2018) A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. Future Med Chem 10(22):2641–2658

    Article  CAS  PubMed  Google Scholar 

  • Bartoloni M, Jin X, Marcaida MJ, Banha J, Dibonaventura I, Bongoni S et al (2015) Bridged bicyclic peptides as potential drug scaffolds: synthesis, structure, protein binding and stability. Chem Sci 6(10):5473–5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129(9):2456–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadra P, Yan J, Li J, Fong S, Siu SWI (2018) AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep 8(1):1697

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya S, Zhang H, Cowburn D, Debnath AK (2012) Novel structures of self-associating stapled peptides. Biopolymers 97(5):253–264

    Article  CAS  PubMed  Google Scholar 

  • Bhonsle JB, Venugopal D, Huddler DP, Magill AJ, Hicks RP (2007) Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J Med Chem 50(26):6545–6553

    Article  CAS  PubMed  Google Scholar 

  • Bi X, Wang C, Ma L, Sun Y, Shang D (2013) Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. J Appl Microbiol 115(3):663–672

    Article  CAS  PubMed  Google Scholar 

  • Bird GH, Madani N, Perry AF, Princiotto AM, Supko JG, He X et al (2010) Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci U S A 107(32):14093–14098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird GH, Irimia A, Ofek G, Kwong PD, Wilson IA, Walensky LD (2014) Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies. Nat Struct Mol Biol 21(12):1058–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird GH, Mazzola E, Opoku-Nsiah K, Lammert MA, Godes M, Neuberg DS et al (2016) Biophysical determinants for cellular uptake of hydrocarbon-stapled peptide helices. Nat Chem Biol 12(10):845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondelle SE, Lohner K (2000) Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure–activity relationship studies. Pept Sci 55(1):74–87

    Article  CAS  Google Scholar 

  • Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L (2013) The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 19(12):758–769

    Article  CAS  PubMed  Google Scholar 

  • Bray BL (2003) Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2(7):587–593

    Article  CAS  PubMed  Google Scholar 

  • Brender JR, McHenry AJ, Ramamoorthy A (2012) Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol 3:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  PubMed  Google Scholar 

  • Brunel FM, Dawson PE (2005) Synthesis of constrained helical peptides by thioether ligation: application to analogs of gp41. Chem Commun (camb) 20:2552–2554

    Article  Google Scholar 

  • Cantel S, Le Chevalier IA, Scrima M, Levy JJ, DiMarchi RD, Rovero P et al (2008) Synthesis and conformational analysis of a cyclic peptide obtained via i to i+4 intramolecular side-chain to side-chain azide−alkyne 1,3-dipolar cycloaddition. J Org Chem 73(15):5663–5674

    Article  CAS  PubMed  Google Scholar 

  • Cerovsky V, Budesinsky M, Hovorka O, Cvacka J, Voburka Z, Slaninova J et al (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee lasioglossum laticeps (Hymenoptera: Halictidae). ChemBioChem 10(12):2089–2099

    Article  CAS  PubMed  Google Scholar 

  • Chapuis H, Slaninova J, Bednarova L, Monincova L, Budesinsky M, Cerovsky V (2012) Effect of hydrocarbon stapling on the properties of alpha-helical antimicrobial peptides isolated from the venom of hymenoptera. Amino Acids 43(5):2047–2058

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index*. J Biol Chem 280(13):12316–12329

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 51(4):1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Yu X, Zhang A, Wang F, Xing Y (2019) De Novo hydrocarbon-stapling design of single-turn α-helical antimicrobial peptides. Int J Pept Res Ther 26(4):1711–1719

    Article  Google Scholar 

  • Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chicharro C, Granata C, Lozano R, Andreu D, Rivas L (2001) N-terminal fatty acid substitution increases the leishmanicidal activity of CA(1–7)M(2–9), a cecropin-melittin hybrid peptide. Antimicrob Agents Chemother 45(9):2441–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromm PM, Spiegel J, Grossmann TN (2015) Hydrocarbon stapled peptides as modulators of biological function. ACS Chem Biol 10(6):1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Cui HK, Guo Y, He Y, Wang FL, Chang HN, Wang YJ et al (2013) Diaminodiacid-based solid-phase synthesis of peptide disulfide bond mimics. Angew Chem Int Ed Engl 52(36):9558–9562

    Article  CAS  PubMed  Google Scholar 

  • Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA et al (2016) Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis 16(2):239–251

    Article  CAS  PubMed  Google Scholar 

  • Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochimica Et Biophysica Acta (BBA) Biomembranes. 1462(1):71–87

    Article  CAS  PubMed  Google Scholar 

  • Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL et al (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett 403(2):208–212

    Article  CAS  PubMed  Google Scholar 

  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501(2–3):146–150

    Article  CAS  PubMed  Google Scholar 

  • Davies J (2006) Where have all the antibiotics gone? Canadian J Infect Dis Med Microbiol 17:707296

    Article  Google Scholar 

  • Dennison SR, Mura M, Harris F, Morton LH, Zvelindovsky A, Phoenix DA (2015) The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. Biochim Biophys Acta 1848(5):1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Dhople VM, Nagaraj R (2005) Conformation and activity of delta-lysin and its analogs. Peptides 26(2):217–225

    Article  CAS  PubMed  Google Scholar 

  • Di Bonaventura I, Baeriswyl S, Capecchi A, Gan BH, Jin X, Siriwardena TN et al (2018) An antimicrobial bicyclic peptide from chemical space against multidrug resistant Gram-negative bacteria. Chem Commun (camb) 54(40):5130–5133

    Article  PubMed  Google Scholar 

  • Di L (2019) Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015, 17(1), pp. 134–43.Costa F, Teixeira C, Gomes P, Martins MCL. Clinical Application of AMPs. In: Matsuzaki K (ed) Antimicrobial peptides: basics for clinical application. Springer, Singapore, pp 281–298

    Google Scholar 

  • Dias Rde O, Franco OL (2015) Cysteine-stabilized alphabeta defensins: from a common fold to antibacterial activity. Peptides 72:64–72

    Article  PubMed  Google Scholar 

  • Dinh TTT, Kim D-H, Lee B-J, Kim Y-W (2014) De Novo design and their antimicrobial activity of stapled amphipathic helices of heptapeptides. Bull Korean Chem Soc 35(12):3632–3636

    Article  CAS  Google Scholar 

  • Dinh TT, Kim DH, Luong HX, Lee BJ, Kim YW (2015a) Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Bioorg Med Chem Lett 25(18):4016–4019

    Article  CAS  PubMed  Google Scholar 

  • Dinh TTT, Kim D-H, Nguyen TQ, Lee B-J, Kim Y-W (2015b) N-capping effects of stapled heptapeptides on antimicrobial and hemolytic activities. Bull Korean Chem Soc 36(10):2511–2515

    Article  CAS  Google Scholar 

  • Epand RF, Ramamoorthy A, Epand RM (2006) Membrane lipid composition and the interaction of pardaxin: the role of cholesterol. Protein Pept Lett 13(1):1–5

    CAS  PubMed  Google Scholar 

  • Fan L, Sun J, Zhou M, Zhou J, Lao X, Zheng H et al (2016) DRAMP: a comprehensive data repository of antimicrobial peptides. Sci Rep 6:24482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feigin AM, Teeter JH, Brand JG (1995) The influence of sterols on the sensitivity of lipid bilayers to melittin. Biochem Biophys Res Commun 211(1):312–317

    Article  CAS  PubMed  Google Scholar 

  • Felix AM, Heimer EP, Wang C-T, Lambros TJ, Fournier A, Mowles TF et al (1988) Synthesis, biological activity and conformational analysis of cyclic GRF analogs. Int J Pept Protein Res 32(6):441–454

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2011) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51

    Article  PubMed  Google Scholar 

  • Frank AO, Vangamudi B, Feldkamp MD, Souza-Fagundes EM, Luzwick JW, Cortez D et al (2014) Discovery of a potent stapled helix peptide that binds to the 70N domain of replication protein A. J Med Chem 57(6):2455–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frecer V (2006) QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. Bioorg Med Chem 14(17):6065–6074

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Cao Z, Li M, Wang S (2020) ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding. BMC Genomics 21(1):597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Games PD, daSilva EQ, Barbosa MO, Almeida-Souza HO, Fontes PP, deMagalhaes MJ, Jr, et al (2016) Computer aided identification of a Hevein-like antimicrobial peptide of bell pepper leaves for biotechnological use. BMC Genomics 17(Suppl 12):999

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatto E, Mazzuca C, Stella L, Venanzi M, Toniolo C, Pispisa B (2006) Effect of peptide lipidation on membrane perturbing activity: a comparative study on two trichogin analogues. J Phys Chem B 110(45):22813–22818

    Article  CAS  PubMed  Google Scholar 

  • Gazit E, Boman A, Boman HG, Shai Y (1995) Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34(36):11479–11488

    Article  CAS  PubMed  Google Scholar 

  • Giangaspero A, Sandri L, Tossi A (2001) Amphipathic α helical antimicrobial peptides. Eur J Biochem 268(21):5589–5600

    Article  CAS  PubMed  Google Scholar 

  • Giordanetto F, Revell JD, Knerr L, Hostettler M, Paunovic A, Priest C et al (2013) Stapled vasoactive intestinal peptide (VIP) derivatives improve VPAC2 agonism and glucose-dependent insulin secretion. ACS Med Chem Lett 4(12):1163–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glukhov E, Burrows LL, Deber CM (2008) Membrane interactions of designed cationic antimicrobial peptides: the two thresholds. Biopolymers 89(5):360–371

    Article  CAS  PubMed  Google Scholar 

  • Green BR, Klein BD, Lee HK, Smith MD, Steve White H, Bulaj G (2013) Cyclic analogs of galanin and neuropeptide Y by hydrocarbon stapling. Bioorg Med Chem 21(1):303–310

    Article  CAS  PubMed  Google Scholar 

  • Halling PJ (1992). In: Creighton TE (ed) Proteins: Structures and molecular properties, 2nd edn. WH Freeman, New York, p xiii + 512 (price £22.95. ISBN 0-7167-7030-X. Journal of Chemical Technology & Biotechnology. 1995;62(1):105-)

    Google Scholar 

  • Hallock KJ, Lee DK, Ramamoorthy A (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84(5):3052–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RE (2000) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 9(8):1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8(9):402–410

    Article  CAS  PubMed  Google Scholar 

  • Haney CM, Horne WS (2014) Dynamic covalent side-chain cross-links via intermolecular oxime or hydrazone formation from bifunctional peptides and simple organic linkers. J Pept Sci 20(2):108–114

    Article  CAS  PubMed  Google Scholar 

  • Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discovery 2(3):214–221

    Article  CAS  PubMed  Google Scholar 

  • Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736

    Article  CAS  PubMed  Google Scholar 

  • Hawrani A, Howe RA, Walsh TR, Dempsey CE (2008) Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem 283(27):18636–18645

    Article  CAS  PubMed  Google Scholar 

  • Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ et al (2006) Universal behavior of membranes with sterols. Biophys J 90(5):1639–1649

    Article  CAS  PubMed  Google Scholar 

  • Hilinski GJ, Kim YW, Hong J, Kutchukian PS, Crenshaw CM, Berkovitch SS et al (2014) Stitched alpha-helical peptides via bis ring-closing metathesis. J Am Chem Soc 136(35):12314–12322

    Article  CAS  PubMed  Google Scholar 

  • Hilpert K, Elliott MR, Volkmer-Engert R, Henklein P, Donini O, Zhou Q et al (2006) Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol 13(10):1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Saito C, Goto C, Yokoo H, Kawano R, Misawa T et al (2020) Rational design of helix-stabilized antimicrobial peptide foldamers containing alpha, alpha-disubstituted amino acids or side-chain stapling. ChemPlusChem 85(12):2731–2736

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Saito C, Yokoo H, Goto C, Kawano R, Misawa T et al (2021) Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules. https://doi.org/10.3390/molecules26020444

    Article  PubMed  PubMed Central  Google Scholar 

  • Huseby D, Barklis RL, Alfadhli A, Barklis E (2005) Assembly of human immunodeficiency virus precursor gag proteins. J Biol Chem 280(18):17664–17670

    Article  CAS  PubMed  Google Scholar 

  • Jackson DY, King DS, Chmielewski J, Singh S, Schultz PG (1991) General approach to the synthesis of short alpha-helical peptides. J Am Chem Soc 113(24):9391–9392

    Article  CAS  Google Scholar 

  • Jenner ZB, Crittenden CM, Gonzalez M, Brodbelt JS, Bruns KA (2017) Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity. Biopolymers. https://doi.org/10.1002/bip.23006

    Article  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenssen H, Fjell CD, Cherkasov A, Hancock RE (2008) QSAR modeling and computer-aided design of antimicrobial peptides. J Pept Sci 14(1):110–114

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 90(3):369–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Vasil AI, Gera L, Vasil ML, Hodges RS (2011) Rational design of alpha-helical antimicrobial peptides to target gram-negative pathogens, acinetobacter baumannii and pseudomonas aeruginosa: utilization of charge, “specificity determinants”, total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem Biol Drug Des 77(4):225–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Vasil AI, Vasil ML, Hodges RS (2014) “Specificity determinants” improve therapeutic indices of two antimicrobial peptides piscidin 1 and dermaseptin s4 against the gram-negative pathogens acinetobacter baumannii and pseudomonas aeruginosa. Pharmaceuticals (basel) 7(4):366–391

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Gradus JL, Rosellini AJ (2020) Supervised machine learning: a brief primer. Behav Ther 51(5):675–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Hammer J, Pate M, Zhang Y, Zhu F, Zmuda E et al (2005) Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials. Antimicrob Agents Chemother 49(12):4957–4964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju X, Chen X, Du L, Wu X, Liu F, Yuan J (2015) Alanine-scanning mutational analysis of durancin gl reveals residues important for its antimicrobial activity. J Agric Food Chem 63(28):6402–6409

    Article  CAS  PubMed  Google Scholar 

  • Juretic D, Simunic J (2019) Design of alpha-helical antimicrobial peptides with a high selectivity index. Expert Opin Drug Discov 14(10):1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Kale SS, Villequey C, Kong XD, Zorzi A, Deyle K, Heinis C (2018) Cyclization of peptides with two chemical bridges affords large scaffold diversities. Nat Chem 10(7):715–723

    Article  CAS  PubMed  Google Scholar 

  • Kang X, Dong F, Shi C, Liu S, Sun J, Chen J et al (2019) DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 6(1):148

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Moon H, Han SW, Kim DH, Kim BM, Lee BJ (2020) Structure-based de novo design of mycobacterium tuberculosis vapc-activating stapled peptides. ACS Chem Biol 15(9):2493–2498

    Article  CAS  PubMed  Google Scholar 

  • Katarzyna EG, Małgorzata D (2017) Antimicrobial peptides under clinical trials. Curr Top Med Chem 17(5):620–628

    Google Scholar 

  • Kawamoto SA, Coleska A, Ran X, Yi H, Yang CY, Wang S (2012) Design of triazole-stapled BCL9 alpha-helical peptides to target the beta-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. J Med Chem 55(3):1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, Lee JY et al (1998) Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 4(11):1302–1307

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Verdine GL (2009) Stereochemical effects of all-hydrocarbon tethers in i, i+4 stapled peptides. Bioorg Med Chem Lett 19(9):2533–2536

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Han SK, Park JB, Ryu PD, Baek HJ, Lee BJ (1999) Gaegurin 4, a peptide antibiotic of frog skin, forms voltage-dependent channels in planar lipid bilayers. J Pept Res 53(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-W, Kutchukian PS, Verdine GL (2010) Introduction of all-hydrocarbon i, i+3 staples into α-helices via ring-closing olefin metathesis. Org Lett 12(13):3046–3049

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Jeong JH, Kim Y (2018) Design and engineering of antimicrobial peptides based on LPcin-YK3, an antimicrobial peptide derivative from bovine milk. J Microbiol Biotechnol 28(3):381–390

    Article  CAS  PubMed  Google Scholar 

  • Kindrachuk J, Napper S (2010) Structure-activity relationships of multifunctional host defence peptides. Mini Rev Med Chem 10(7):596–614

    Article  CAS  PubMed  Google Scholar 

  • Klein MJ, Schmidt S, Wadhwani P, Burck J, Reichert J, Afonin S et al (2017) Lactam-stapled cell-penetrating peptides: cell uptake and membrane binding properties. J Med Chem 60(19):8071–8082

    Article  CAS  PubMed  Google Scholar 

  • Krishnakumari V, Nagaraj R (2015) n-terminal fatty acylation of peptides spanning the cationic C-terminal segment of bovine β-defensin-2 results in salt-resistant antibacterial activity. Biophys Chem 199:25–33

    Article  CAS  PubMed  Google Scholar 

  • Kumita JR, Smart OS, Woolley GA (2000) Photo-control of helix content in a short peptide. Proc Natl Acad Sci U S A 97(8):3803–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutchukian PS, Yang JS, Verdine GL, Shakhnovich EI (2009) All-atom model for stabilization of alpha-helical structure in peptides by hydrocarbon staples. J Am Chem Soc 131(13):4622–4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon JY, Kim MK, Mereuta L, Seo CH, Luchian T, Park Y (2019) Mechanism of action of antimicrobial peptide P5 truncations against pseudomonas aeruginosa and staphylococcus aureus. AMB Express 9(1):122

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence TJ, Carper DL, Spangler MK, Carrell AA, Rush TA, Minter SJ et al (2021) amPEPpy 1.0: a portable and accurate antimicrobial peptide prediction tool. Bioinformatics 37(14):2058–2060

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee DG (2008) Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp Mol Med 40(4):370–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DL, Mant CT, Hodges RS (2003) A novel method to measure self-association of small amphipathic molecules: temperature profiling in reversed-phase chromatography. J Biol Chem 278(25):22918–22927

    Article  CAS  PubMed  Google Scholar 

  • Lee JK, Gopal R, Park SC, Ko HS, Kim Y, Hahm KS et al (2013) A proline-hinge alters the characteristics of the amphipathic alpha-helical AMPs. PLoS ONE 8(7):e67597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL (2017) What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7(6):20160153

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee EY, Wong GCL, Ferguson AL (2018) Machine learning-enabled discovery and design of membrane-active peptides. Bioorg Med Chem 26(10):2708–2718

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Hwang JS, Lee DG (2020) Antibacterial action of lactoferricin B like peptide against Escherichia coli: reactive oxygen species-induced apoptosis-like death. J Appl Microbiol 129(2):287–295

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Sun L, Huang S, Zhu C, Li P, He J et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res [internet] 11(7):3919–3931

    CAS  PubMed  Google Scholar 

  • Leite NB, da Costa LC, Dos Santos AD, Dos Santos Cabrera MP, de Souza BM, Palma MS et al (2011) The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 40(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Leite NB, Dos Santos AD, de Souza BM, Palma MS, Ruggiero NJ (2014) Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles. Eur Biophys J 43(4–5):121–130

    CAS  PubMed  Google Scholar 

  • Leon Madrazo A, Segura Campos MR (2022) In silico prediction of peptide variants from chia (S hispanica L) with antimicrobial, antibiofilm, and antioxidant potential. Comput Biol Chem 98:107695

    Article  CAS  PubMed  Google Scholar 

  • Li H, Hu Y, Pu Q, He T, Zhang Q, Wu W et al (2020a) Novel stapling by lysine tethering provides stable and low hemolytic cationic antimicrobial peptides. J Med Chem 63(8):4081–4089

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen S, Zhang WD, Hu HG (2020b) Stapled helical peptides bearing different anchoring residues. Chem Rev 120(18):10079–10144

    Article  CAS  PubMed  Google Scholar 

  • Lin YA, Chalker JM, Davis BG (2009) Olefin metathesis for site-selective protein modification. ChemBioChem 10(6):959–969

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Fang Y, Huang Q, Wu J (2011) A rigidity-enhanced antimicrobial activity: a case for linear cationic alpha-helical peptide HP(2–20) and its four analogues. PLoS ONE 6(1):e16441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Eichler J, Pischetsrieder M (2015) Virtual screening of a milk peptide database for the identification of food-derived antimicrobial peptides. Mol Nutr Food Res 59(11):2243–2254

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhang W, Gou S, Huang H, Yao J, Yang Z et al (2017a) Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J Pept Sci 23(11):824–832

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Fan L, Sun J, Lao X, Zheng H (2017b) Computational resources and tools for antimicrobial peptides. J Pept Sci 23(1):4–12

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Bao J, Lao X, Zheng H (2018) Novel 3D structure based model for activity prediction and design of antimicrobial peptides. Sci Rep 8(1):11189

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo YC, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23(8):1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long YQ, Huang SX, Zawahir Z, Xu ZL, Li H, Sanchez TW et al (2013) Design of cell-permeable stapled peptides as HIV-1 integrase inhibitors. J Med Chem 56(13):5601–5612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loose C, Jensen K, Rigoutsos I, Stephanopoulos G (2006) A linguistic model for the rational design of antimicrobial peptides. Nature 443(7113):867–869

    Article  CAS  PubMed  Google Scholar 

  • Luong HX, Kim D-H, Lee B-J, Kim Y-W (2016) Antimicrobial and hemolytic activity of stapled heptapeptide dimers. Bull Korean Chem Soc 37(8):1199–1203

    Article  CAS  Google Scholar 

  • Luong HX, Kim DH, Lee BJ, Kim YW (2017a) Antimicrobial activity and stability of stapled helices of polybia-MP1. Arch Pharm Res 40(12):1414–1419

    Article  CAS  PubMed  Google Scholar 

  • Luong HX, Kim DH, Mai NT, Lee BJ, Kim YW (2017b) Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Arch Pharm Res 40(6):713–719

    Article  CAS  PubMed  Google Scholar 

  • Luong HX, Kim DH, Lee BJ, Kim YW (2018) Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides. Arch Pharm Res 41(11):1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Luong HX, Thanh TT, Tran TH (2020) Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 260:118407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discovery Today 7(20):1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Hakansson J, Ringstad L, Bjorn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Marqusee S, Robbins VH, Baldwin RL (1989) Unusually stable helix formation in short alanine-based peptides. Proc Natl Acad Sci U S A 86(14):5286–5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6(5):468–472

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788(8):1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Mazzier D, Peggion C, Toniolo C, Moretto A (2014) Enhancement of the helical content and stability induced in a linear oligopeptide by an i, I + 4 intramolecularly double stapled, overlapping, bicyclic [31, 22, 5]-(E)ene motif. Biopolymers 102(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys J 93(11):3907–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meher PK, Sahu TK, Saini V, Rao AR (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7:42362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng H, Kumar K (2007) Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc 129(50):15615–15622

    Article  CAS  PubMed  Google Scholar 

  • Migon D, Neubauer D, Kamysz W (2018) Hydrocarbon stapled antimicrobial peptides. Protein J 37(1):2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra B, Wang G (2012) The importance of amino acid composition in natural amps: an evolutional, structural, and functional perspective. Front Immunol. https://doi.org/10.3389/fimmu.2012.00221

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra AK, Choi J, Moon E, Baek KH (2018) Tryptophan-rich and proline-rich antimicrobial peptides. Molecules. https://doi.org/10.3390/molecules23040815

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) A short d-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep 7(1):6953

    Article  PubMed  PubMed Central  Google Scholar 

  • Monroc S, Badosa E, Feliu L, Planas M, Montesinos E, Bardaji E (2006) De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides 27(11):2567–2574

    Article  CAS  PubMed  Google Scholar 

  • Mourtada R, Herce HD, Yin DJ, Moroco JA, Wales TE, Engen JR et al (2019) Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat Biotechnol 37(10):1186–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mowery BP, Lee SE, Kissounko DA, Epand RF, Epand RM, Weisblum B et al (2007) Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc 129(50):15474–15476

    Article  CAS  PubMed  Google Scholar 

  • Muppidi A, Doi K, Edwardraja S, Drake EJ, Gulick AM, Wang HG et al (2012) Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J Am Chem Soc 134(36):14734–14737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mura M, Wang J, Zhou Y, Pinna M, Zvelindovsky AV, Dennison SR et al (2016) The effect of amidation on the behaviour of antimicrobial peptides. Eur Biophys J 45(3):195–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DW, Moore JE, Rao JR (2019) Antimicrobial resistance (AMR): significance to food quality and safety. Food Quality and Safety 3(1):15–22

    Article  CAS  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472

    Article  CAS  PubMed  Google Scholar 

  • Niemz A, Tirrell DA (2001) Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 123(30):7407–7413

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Zobel K, Fedorova A, Quan C, Yang H, Fairbrother WJ et al (2013) Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem Biol 8(2):297–302

    Article  CAS  PubMed  Google Scholar 

  • Page MJ, Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65(7–8):1220–1236

    Article  CAS  PubMed  Google Scholar 

  • Pane K, Cafaro V, Avitabile A, Torres MT, Vollaro A, De Gregorio E et al (2018) Identification of novel cryptic multifunctional antimicrobial peptides from the human stomach enabled by a computational-experimental platform. ACS Synth Biol 7(9):2105–2115

    Article  CAS  PubMed  Google Scholar 

  • Pathak S, Chauhan VS (2011) Rationale-based, de novo design of dehydrophenylalanine-containing antibiotic peptides and systematic modification in sequence for enhanced potency. Antimicrob Agents Chemother 55(5):2178–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen JT, Moult J (1995) Ab initio structure prediction for small polypeptides and protein fragments using genetic algorithms. Proteins 23(3):454–460

    Article  CAS  PubMed  Google Scholar 

  • Pham TK, Kim DH, Lee BJ, Kim YW (2013) Truncated and constrained helical analogs of antimicrobial esculentin-2EM. Bioorg Med Chem Lett 23(24):6717–6720

    Article  CAS  PubMed  Google Scholar 

  • Phillips C, Roberts LR, Schade M, Bazin R, Bent A, Davies NL et al (2011) Design and structure of stapled peptides binding to estrogen receptors. J Am Chem Soc 133(25):9696–9699

    Article  CAS  PubMed  Google Scholar 

  • Pizzo E, Pane K, Bosso A, Landi N, Ragucci S, Russo R et al (1860) 2018 Novel bioactive peptides from PD-L1/2, a type 1 ribosome inactivating protein from Phytolacca dioica L. evaluation of their antimicrobial properties and anti-biofilm activities. Biochim Biophys Acta Biomembr 7:1425–1435

    Google Scholar 

  • Pollard HB, Arispe N, Rojas E (1995) Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol Neurobiol 15(5):513–526

    Article  CAS  PubMed  Google Scholar 

  • Porto WF, Fensterseifer ICM, Ribeiro SM, Franco OL (1862a) Joker: An algorithm to insert patterns into sequences for designing antimicrobial peptides. Biochim Biophys Acta Gen Subj 9:2043–2052

    Google Scholar 

  • Porto WF, Irazazabal L, Alves ESF, Ribeiro SM, Matos CO, Pires AS et al (2018b) In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 9(1):1490

    Article  PubMed  PubMed Central  Google Scholar 

  • Radzishevsky IS, Rotem S, Zaknoon F, Gaidukov L, Dagan A, Mor A (2005) Effects of acyl versus aminoacyl conjugation on the properties of antimicrobial peptides. Antimicrob Agents Chemother 49(6):2412–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G (1998) Homology modeling, model and software evaluation: three related resources. Bioinformatics 14(6):523–528

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Villegas E, Montoya-Rosales A, Rivas-Santiago B, Corzo G (2014) Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PLoS ONE 9(7):e101742

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29

    Article  CAS  Google Scholar 

  • Sabatino V, Ward TR (2019) Aqueous olefin metathesis: recent developments and applications. Beilstein J Org Chem 15:445–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabe VT, Ntombela T, Jhamba LA, Maguire GEM, Govender T, Naicker T et al (2021) Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: a review. Eur J Med Chem 224:113705

    Article  CAS  PubMed  Google Scholar 

  • Schafmeister C, Po J, Verdine G (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc. https://doi.org/10.1021/ja000563a

    Article  Google Scholar 

  • Schmidtchen A, Pasupuleti M, Malmsten M (2014) Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interface Sci 205:265–274

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778(10):2308–2317

    Article  CAS  PubMed  Google Scholar 

  • Shallcross LJ, Davies DS (2014) Antibiotic overuse: a key driver of antimicrobial resistance. Br J Gen Pract 64(629):604–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Maupetit J, Derreumaux P, Tuffery P (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput 10(10):4745–4758

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Chen J, Xiao B, Kang X, Lao X, Zheng H (2019) Discovery of NDM-1 inhibitors from natural products. J Glob Antimicrob Resist 18:80–87

    Article  PubMed  Google Scholar 

  • Shi C, Dong F, Zhao G, Zhu N, Lao X, Zheng H (2020) Applications of machine-learning methods for the discovery of NDM-1 inhibitors. Chem Biol Drug Des 96(5):1232–1243

    Article  CAS  PubMed  Google Scholar 

  • Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y et al (2022) DRAMP 30: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res 50(D1):D488–D496

    Article  CAS  PubMed  Google Scholar 

  • Shim SY, Kim Y-W, Verdine GL (2013) A new i, i + 3 peptide stapling system for α-helix stabilization. Chem Biol Drug Des 82(6):635–642

    Article  CAS  PubMed  Google Scholar 

  • Silva AF, Bastos EL, Torres MD, Costa-da-Silva AL, Ioshino RS, Capurro ML et al (2014) Antiplasmodial activity study of angiotensin II via Ala scan analogs. J Pept Sci 20(8):640–648

    Article  CAS  PubMed  Google Scholar 

  • Sinclair JK, Schepartz A (2014) Influence of macrocyclization on allosteric, juxtamembrane-derived, stapled peptide inhibitors of the epidermal growth factor receptor (EGFR). Org Lett 16(18):4916–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh O, Hsu WL, Su EC (2021) Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. BMC Bioinformatics 22(1):389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanig S, Heider D (2019) Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min 12:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Stone TA, Cole GB, Nguyen HQ, Sharpe S, Deber CM (2018) Influence of hydrocarbon-stapling on membrane interactions of synthetic antimicrobial peptides. Bioorg Med Chem 26(6):1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Su X, Xu J, Yin Y, Quan X, Zhang H (2019) Antimicrobial peptide identification using multi-scale convolutional network. BMC Bioinformatics 20(1):730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sviridov DO, Ikpot IZ, Stonik J, Drake SK, Amar M, Osei-Hwedieh DO et al (2011) Helix stabilization of amphipathic peptides by hydrocarbon stapling increases cholesterol efflux by the ABCA1 transporter. Biochem Biophys Res Commun 410(3):446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi D, Shukla SK, Prakash O, Zhang G (2010) Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92(9):1236–1241

    Article  CAS  PubMed  Google Scholar 

  • Talevi A (2018) Computer-Aided Drug Design: An Overview. In: Jagtap UB (ed) Computational drug discovery and design. Springer, New York, pp 1–19

    Google Scholar 

  • Tan R, Chen L, Buettner JA, Hudson D, Frankel AD (1993) RNA recognition by an isolated α helix. Cell 73(5):1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Tan YS, Lane DP, Verma CS (2016) Stapled peptide design: principles and roles of computation. Drug Discov Today 21(10):1642–1653

    Article  CAS  PubMed  Google Scholar 

  • Theuretzbacher U (2017) Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr Opin Microbiol 39:106–112

    Article  CAS  PubMed  Google Scholar 

  • Torcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MA et al (2013) Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against gram-negative and Gram-positive bacteria. Biochim Biophys Acta 1828(3):944–955

    Article  CAS  PubMed  Google Scholar 

  • Torres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C (2019) Peptide design principles for antimicrobial applications. J Mol Biol 431(18):3547–3567

    Article  CAS  PubMed  Google Scholar 

  • Tuerkova A, Kabelka I, Kralova T, Sukenik L, Pokorna S, Hof M et al (2020) Effect of helical kink in antimicrobial peptides on membrane pore formation. Elife. https://doi.org/10.7554/eLife.47946

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105(3):973–1000

    Article  CAS  PubMed  Google Scholar 

  • Udugamasooriya DG, Dunham G, Ritchie C, Brekken RA, Kodadek T (2008) The pharmacophore of a peptoid VEGF receptor 2 antagonist includes both side chain and main chain residues. Bioorg Med Chem Lett 18(22):5892–5894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34(16):2740–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verly RM, Rodrigues MA, Daghastanli KR, Denadai AM, Cuccovia IM, Bloch C Jr et al (2008) Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides 29(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44(D1):D1094–D1097

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi H, Matsumoto H, Hashimoto K, Teraguchi S, Takase M, Hayasawa H (1999) N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Chemother 43(5):1267–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 57(15):6275–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkh025

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Peng J, Ma J, Xu J (2016) Protein secondary structure prediction using deep convolutional neural fields. Sci Rep 6:18962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fan Y, Zhou Z, Tu H, Ren Q, Wang X et al (2017) De novo synthetic short antimicrobial peptides against cariogenic bacteria. Arch Oral Biol 80:41–50

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Mishra B, Lushnikova T, Narayana JL, Wang G (2018) Amino acid composition determines peptide activity spectrum and hot-spot-based design of merecidin. Adv Biosyst. https://doi.org/10.1002/adbi.201700259

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L et al (2019a) Antimicrobial peptides: promising alternatives in the post feeding antibiotic era. Med Res Rev 39(3):831–859

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Song J, Yang Z, He S, Yang Y, Feng X et al (2019b) Antimicrobial peptides with high proteolytic resistance for combating gram-negative bacteria. J Med Chem 62(5):2286–2304

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Garlick S, Zloh M (2021) Deep learning for novel antimicrobial peptide design. Biomolecules. https://doi.org/10.3390/biom11030471

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenzel M, Chiriac AI, Otto A, Zweytick D, May C, Schumacher C et al (2014) Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc Natl Acad Sci USA 111(14):E1409–E1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojciechowska M, Macyszyn J, Miszkiewicz J, Grzela R, Trylska J (2021) Stapled anoplin as an antibacterial agent. Front Microbiol 12:772038

    Article  PubMed  PubMed Central  Google Scholar 

  • Won HS, Park SH, Kim HE, Hyun B, Kim M, Lee BJ et al (2002) Effects of a tryptophanyl substitution on the structure and antimicrobial activity of C-terminally truncated gaegurin 4. Eur J Biochem 269(17):4367–4374

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Wang P, Lin WZ, Jia JH, Chou KC (2013) iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem 436(2):168–177

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wang K, Dang W, Chen R, Xie J, Zhang B et al (2013) Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother 57(1):220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Bhadra P, Li A, Sethiya P, Qin L, Tai HK et al (2020) Deep-AmPEP30: improve short antimicrobial peptides prediction with deep learning. Mol Ther Nucleic Acids 20:882–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81(3):1475–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang CH, Chen YC, Peng SY, Tsai AP, Lee TJ, Yen JH et al (2018) An engineered arginine-rich alpha-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci Rep 8(1):14602

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama F, Imura Y, Ohno K, Zendo T, Nakayama J, Matsuzaki K et al (2009) Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 53(8):3211–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonezawa A, Kuwahara J, Fujii N, Sugiura Y (1992) Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31(11):2998–3004

    Article  CAS  PubMed  Google Scholar 

  • Zamora-Carreras H, Strandberg E, Muhlhauser P, Burck J, Wadhwani P, Jimenez MA et al (2016) Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. Biochim Biophys Acta 1858(6):1328–1338

    Article  CAS  PubMed  Google Scholar 

  • Zemel A, Fattal DR, Ben-Shaul A (2003) Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J 84(4):2242–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Benz R, Hancock REW (1999) Influence of proline residues on the antibacterial and synergistic activities of α-helical peptides. Biochemistry 38(25):8102–8111

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao Q, Bhattacharya S, Waheed AA, Tong X, Hong A et al (2008) A cell-penetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol 378(3):565–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Curreli F, Zhang X, Bhattacharya S, Waheed AA, Cooper A et al (2011) Antiviral activity of alpha-helical stapled peptides designed from the HIV-1 capsid dimerization domain. Retrovirology 8:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S-K, Song J-w, Gong F, Li S-B, Chang H-Y, Xie H-M et al (2016) Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep. https://doi.org/10.1038/srep27394

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Dong N, Wang Z, Ma Z, Zhang L, Ma Q et al (2014) Design of imperfectly amphipathic alpha-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomater 10(1):244–257

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Spokoyny AM, Zhang C, Simon MD, Yu H, Lin YS et al (2014) Convergent diversity-oriented side-chain macrocyclization scan for unprotected polypeptides. Org Biomol Chem 12(4):566–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zweytick D, Pabst G, Abuja PM, Jilek A, Blondelle SE, Andra J et al (2006) Influence of N-acylation of a peptide derived from human lactoferricin on membrane selectivity. Biochim Biophys Acta 1758(9):1426–1435

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 82073767), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD No. 2014065).

Author information

Authors and Affiliations

Authors

Contributions

YHY wrote the main manuscript text; YHY and YZZ prepared data collection; HYL prepared data analysis; and HZ put forward the study conception. All authors reviewed the manuscript.

Corresponding author

Correspondence to Heng Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Handling editor: Z. Benfodda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Y., Liu, H., Zhu, Y. et al. Rational design of stapled antimicrobial peptides. Amino Acids 55, 421–442 (2023). https://doi.org/10.1007/s00726-023-03245-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03245-w

Keywords

Navigation