Skip to main content
Log in

Understanding non-covalent interactions by NMR in urea- and thiourea-substituted calixarene complexes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

High level quantum mechemical gauge-independent atomic orbital (GIAO)-DFT NMR calculations (B3LYP/6-311++G**) were performed to address the binding interactions of functionalized thiourea and urea substituted calixarenes. 1H NMR chemical shifts were evaluated for hydrogen-bonded protons of calixarenes (1,2) and their anionic-complexes with F, Cl, CN, N3 and SCN. Comparison of experimental vs. calculated anion binding geometries along with their chemical shift were made to decipher the structural features. The calculated chemical shift exhibit reasonable agreement with the experimental data. We showed that the substitution of C=O to C=S in calixarenes significantly affect the interaction with anions. In particular, urea substituted calixarenes-F possess most deshielded hydrogens among the modeled inclusion complexes. Our study showed that NMR calculation in combination with calixarene structural models can be helpful in characterizing the non-covalent interactions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ward MD (1997) Chem Soc Rev 26:365

    Article  CAS  Google Scholar 

  2. Yang H, Yuan B, Zhang X, Scherman OA (2014) Acc Chem Res 47:2106

    Article  CAS  Google Scholar 

  3. Athar M, Kongor A, Panchal M, Jha P, Jain V (2017) J Mol Toxicol 3:74

    Google Scholar 

  4. Gutsche CD, Dhawan B, No KH, Muthukrishnan R (1981) J Am Chem Soc 103:3782

    Article  CAS  Google Scholar 

  5. Athar M, Jha PC (2019) Monatsh Chem 150:1205

    Article  CAS  Google Scholar 

  6. Neri P, Sessler JL, Wang MX (2016) Calixarenes and beyond. Springer International Publishing, Geneva

    Book  Google Scholar 

  7. Panchal M, Kongor A, Athar M, Mehta V, Jha P, Jain V (2018) New J Chem 42:311

    Article  CAS  Google Scholar 

  8. Flaig D, Maurer M, Hanni M, Braunger K, Kick L, Thubauville M, Ochsenfeld C (2014) J Chem Theory Comput 10:572

    Article  CAS  Google Scholar 

  9. Soulsby D, Anna LJ, Wallner AS (2013) NMR spectroscopy in the undergraduate curriculum. American Chemical Society, Providence

    Book  Google Scholar 

  10. Mulder FA, Filatov M (2010) Chem Soc Rev 39:578

    Article  CAS  Google Scholar 

  11. Athar M, Lone MY, Jha PC (2017) J Mol Liq 237:473

    Article  CAS  Google Scholar 

  12. Qureshi N, Yufit DS, Steed KM, Howard JA, Steed JW (2014) CrystEngComm 16:8413

    Article  CAS  Google Scholar 

  13. Athar M, Lone MY, Jha PC (2018) Chem Phys 501:68

    Article  CAS  Google Scholar 

  14. Scheerder J, Fochi M, Engbersen JF, Reinhoudt DN (1994) J Org Chem 59:7815

    Article  CAS  Google Scholar 

  15. Zhang YM, Ren HX, Zhou YQ, Luo R, Xu WX, Wei TB (2007) Turk J Chem 31:327

    CAS  Google Scholar 

  16. Dydio P, Lichosyt D, Jurczak J (2011) Chem Soc Rev 40:2971

    Article  CAS  Google Scholar 

  17. Brouwer DH, Alavi S, Ripmeester JA (2008) Z Phys Chem 10:3857

    CAS  Google Scholar 

  18. Morales A, Santana A, Althoff G, Melendez E (2011) J Organomet Chem 696:2519

    Article  CAS  Google Scholar 

  19. Li S, Li J, Tang J, Deng F (2018) Solid State Nucl Magn Reson 90:1

    Article  Google Scholar 

  20. Li Q, Zhou J, Sun J, Yang J (2019) Tetrahedron Lett 60:151022

    Article  Google Scholar 

  21. Gargiulli C, Gattuso G, Notti A, Pappalardo S, Parisi MF (2010) Supramol Chem 22:358

    Article  CAS  Google Scholar 

  22. Cao DL, Feng YQ, Liu SN, Chen SS (2010) J Mol Model 16:589

    Article  CAS  Google Scholar 

  23. Murphy P, Dalgarno SJ, Paterson MJ (2016) J Phys Chem A 120:824

    Article  CAS  Google Scholar 

  24. Jose DA, Kumar DK, Ganguly B, Das A (2004) Org Lett 6:3445

    Article  CAS  Google Scholar 

  25. Nishizawa S, Bühlmann P, Iwao M, Umezawa Y (1995) Tetrahedron Lett 36:6483

    Article  CAS  Google Scholar 

  26. Pauling L (1932) J Am Chem Soc 54:3570

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukud R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi MR, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  28. Allen FH (2002) Acta Crystallogr Sect B Struct Sci 58:380

    Article  Google Scholar 

  29. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  30. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science & Technology (DST), New Delhi under INSPIRE-SRF to Mohd Athar. H.Behzadi and S.Makki thanks Kharazmi University for financial support.

Funding

Funding was provided by Department of Science and Technology, Ministry of Science and Technology (Grant no. 150167) under Inspire Fellowship scheme to Mohd Athar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Behzadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athar, M., Behzadi, H. & Makki, S. Understanding non-covalent interactions by NMR in urea- and thiourea-substituted calixarene complexes. Monatsh Chem 151, 743–749 (2020). https://doi.org/10.1007/s00706-020-02603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02603-8

Navigation