Skip to main content
Log in

Molecular analysis of goose parvovirus field strains from a Derzsy’s disease outbreak reveals local European-associated variants

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Since its first recognition in the early 1960s, Derzsy’s disease has caused significant economic losses in the goose meat industry through the world. Today, Derzsy’s disease still maintains its importance for small-scale waterfowl farming, despite not having a significant impact on public health. In the present study, we investigated the distribution of goose parvovirus (GPV) and its potential variants from a 2019 outbreak in Turkey. Tissue samples were obtained from infected eggs and goslings that were raised in distinct farming areas of the various provinces. For this purpose, a novel primer set for amplification of a 630-bp region of VP3 was designed to confirm GPV infection by conventional PCR method. A 4709-base nucleotide sequence including the structural, non-structural, and 5' inverted terminal repeat regions was obtained from three samples from the Central Anatolian region. Multiple sequence comparisons and phylogenetic analysis demonstrated that the field strains clustered with European group 2 and contained a series of unique amino acid substitutions that might affect the virulence of the virus. These results confirmed that European-related field strains caused the outbreak in Asia Minor, and this might assist in understanding the circulation of GPV in Asia and Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BLAST:

Basic Local Alignment Search Tool

dN:

Non-synonymous mutation

dS:

Synonymous mutation

GPV:

Goose parvovirus

ITR:

Inverted terminal repeat

MDPV:

Muscovy duck parvovirus

MUSCLE:

Multiple Sequence Comparison by Log-Expectation

MSA:

Multiple sequence alignment

NS:

Non-structural

PCR:

Polymerase chain reaction

Rep:

Replication

RBE:

Ribosome binding element

SBDS:

Short beak and dwarfism syndrome

USA:

United States of America

VP:

Viral protein

References

  1. Woolcock PR (2013) Viral infections of waterfowl. Diseases of poultry. Wiley, New York, pp 417–463

    Google Scholar 

  2. Nagy Z, Derzsy D (1968) A viral disease of goslings. II. Microscopic lesions. Acta Vet Acad Sci Hung 18:3–17

    CAS  PubMed  Google Scholar 

  3. Cotmore SF, Agbandje-McKenna M, Canuti M et al (2019) ICTV virus taxonomy profile: Parvoviridae. J Gen Virol 100:367–368. https://doi.org/10.1099/jgv.0.001212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bian G, Ma H, Luo M et al (2019) Identification and genomic analysis of two novel duck-origin GPV-related parvovirus in China. BMC Vet Res 15:1–10. https://doi.org/10.1186/s12917-019-1833-9

    Article  Google Scholar 

  5. Parrish CR (2011) Parvoviridae. Fenner’s veterinary virology. Elsevier, Amsterdam, pp 225–235

    Google Scholar 

  6. Tatár-kis T, Mató T, Markos B, Palya V (2004) Phylogenetic analysis of Hungarian goose parvovirus isolates and vaccine strains. Avian Pathol 33:438–444. https://doi.org/10.1080/03079450410001724067

    Article  CAS  PubMed  Google Scholar 

  7. Le Gall-Reculé G, Jestin V (1994) Biochemical and genomic characterization of muscovy duck parvovirus. Arch Virol 139:121–131. https://doi.org/10.1007/BF01309459

    Article  PubMed  Google Scholar 

  8. Zádori Z, Stefancsik R, Rauch T, Kisary J (1995) Analysis of the complete nucleotide sequences of goose and muscovy duck pervoviruses indicates common ancestral origin with adeno-associated virus 2. Virology 212:562–573. https://doi.org/10.1006/viro.1995.1514

    Article  PubMed  Google Scholar 

  9. Zádori Z, Erdei J, Nagy J, Kisary J (1994) Characteristics of the genome of goose parvovirus. Avian Pathol 23:359–364. https://doi.org/10.1080/03079459408419004

    Article  PubMed  Google Scholar 

  10. Schettler CH (1971) Virus hepatitis of geese II. Host range of goose hepatitis virus. Avian Dis 15:809. https://doi.org/10.2307/1588871

    Article  CAS  PubMed  Google Scholar 

  11. Schettler CH (1971) Goose virus hepatitis in the Canada goose and snow goose. J Wildl Dis 7:147–148. https://doi.org/10.7589/0090-3558-7.3.147

    Article  CAS  PubMed  Google Scholar 

  12. Glávits R, Zolnai A, Szabó É et al (2005) Comparative pathological studies on domestic geese (Anser Anser Domestica) and muscovy ducks (Cairina Moschata) experimentally infected with parvovirus strains of goose and muscovy duck origin. Acta Vet Hung 53:73–89. https://doi.org/10.1556/AVet.53.2005.1.8

    Article  PubMed  Google Scholar 

  13. Stoute ST, Tsai H, Metwally SA et al (2020) Viral infections of waterfowl. Diseases of poultry. Wiley, New York, pp 446–497

    Chapter  Google Scholar 

  14. Palya V, Zolnai A, Benyeda Z et al (2009) Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus. Avian Pathol 38:175–180. https://doi.org/10.1080/03079450902737839

    Article  PubMed  Google Scholar 

  15. Ning K, Liang T, Wang M et al (2017) Genetic detection and characterization of goose parvovirus: Implications for epidemiology and pathogenicity in Cherry Valley Pekin ducks. Infect Genet Evol 51:101–103. https://doi.org/10.1016/j.meegid.2017.03.024

    Article  PubMed  Google Scholar 

  16. Ning K, Liang T, Wang M et al (2018) Pathogenicity of a variant goose parvovirus, from short beak and dwarfism syndrome of Pekin ducks, in goose embryos and goslings. Avian Pathol 47:391–399. https://doi.org/10.1080/03079457.2018.1459040

    Article  CAS  PubMed  Google Scholar 

  17. Hlinak A, Müller T, Kramer M et al (1998) Serological survey of viral pathogens in bean and white-fronted geese from Germany. J Wildl Dis 34:479–486. https://doi.org/10.7589/0090-3558-34.3.479

    Article  CAS  PubMed  Google Scholar 

  18. Irvine R, Ceeraz V, Cox B et al (2008) Goose parvovirus in Great Britain. Vet Rec 163:461. https://doi.org/10.1136/vr.163.15.461

    Article  PubMed  Google Scholar 

  19. Wozniakowski G (2009) Genetic variance of Derzsy’s disease strains isolated in Poland. J Mol Genet Med 03:210–216. https://doi.org/10.4172/1747-0862.1000037

    Article  CAS  Google Scholar 

  20. Jansson DS, Feinstein R, Kardi V et al (2007) Epidemiologic investigation of an outbreak of goose parvovirus infection in Sweden. Avian Dis Dig 2:e18–e18. https://doi.org/10.1637/0005-2086(2007)51[609:EIOAOO]2.0.CO;2

    Article  Google Scholar 

  21. Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1–19. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  22. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sterky F, Lundeberg J (2000) Sequence analysis of genes and genomes. J Biotechnol 76:1–31. https://doi.org/10.1016/S0168-1656(99)00176-5

    Article  CAS  PubMed  Google Scholar 

  24. Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27:135–145. https://doi.org/10.1002/pro.3290

    Article  CAS  PubMed  Google Scholar 

  25. Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin DP, Murrell B, Golden M et al (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:1–5. https://doi.org/10.1093/ve/vev003

    Article  Google Scholar 

  27. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  29. Kardoğan Ö, Müştak HK, Müştak İB (2021) The first detection and characterization of goose parvovirus (GPV) in Turkey. Trop Anim Health Prod. https://doi.org/10.1007/s11250-020-02463-8

    Article  Google Scholar 

  30. Poonia B, Dunn P, Lu H et al (2006) Isolation and molecular characterization of a new Muscovy duck parvovirus from Muscovy ducks in the USA. Avian Pathol 35:435–441. https://doi.org/10.1080/03079450601009563

    Article  CAS  PubMed  Google Scholar 

  31. Shien J-H, Wang Y-S, Chen C-H et al (2008) Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe. Avian Pathol 37:499–505. https://doi.org/10.1080/03079450802356979

    Article  CAS  PubMed  Google Scholar 

  32. Wan C, Chen C, Cheng L et al (2019) Specific detection and differentiation of classic goose parvovirus and novel goose parvovirus by TaqMan real-time PCR assay, coupled with host specificity. BMC Vet Res 15:1–8. https://doi.org/10.1186/s12917-019-2090-7

    Article  CAS  Google Scholar 

  33. Jinlong Y, Rui Y, Anchun C et al (2010) A simple and rapid method for detection of Goose Parvovirus in the field by loop-mediated isothermal amplification. Virol J 7:2–8. https://doi.org/10.1186/1743-422X-7-14

    Article  CAS  Google Scholar 

  34. Yu X, Wei L, Chen H et al (2018) Development of colloidal gold-based immunochromatographic assay for rapid detection of goose parvovirus. Front Microbiol 9:1–7. https://doi.org/10.3389/fmicb.2018.00953

    Article  Google Scholar 

  35. Chang PC, Shien JH, Wang MS, Shieh HK (2000) Phylogenetic analysis of parvoviruses isolated in Taiwan from ducks and geese. Avian Pathol 29:45–49. https://doi.org/10.1080/03079450094270

    Article  CAS  PubMed  Google Scholar 

  36. Tsai H-J, Tseng C-H, Chang P-C et al (2004) Genetic variation of viral protein 1 genes of field strains of waterfowl parvoviruses and their attenuated derivatives. Avian Dis 48:512–521. https://doi.org/10.1637/7172

    Article  PubMed  Google Scholar 

  37. Chen S, Liu P, He Y et al (2018) The 164 K, 165 K and 167 K residues in 160YPVVKKPKLTEE171 are required for the nuclear import of goose parvovirus VP1. Virology 519:17–22. https://doi.org/10.1016/j.virol.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  38. Tu M, Liu F, Chen S et al (2015) Role of capsid proteins in parvoviruses infection. Virol J. https://doi.org/10.1186/s12985-015-0344-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu TF, Ma B, Gao MC, Wang JW (2012) Localization of linear B-cell epitopes on goose parvovirus structural protein. Vet Immunol Immunopathol 145:522–526. https://doi.org/10.1016/j.vetimm.2011.11.022

    Article  CAS  PubMed  Google Scholar 

  40. Cotmore SF, Agbandje-McKenna M, Chiorini JA et al (2014) The family Parvoviridae. Arch Virol 159:1239–1247. https://doi.org/10.1007/s00705-013-1914-1

    Article  CAS  PubMed  Google Scholar 

  41. Yu T-F, Ma B, Wang J-W (2016) Identification of linear B-cell epitopes on goose parvovirus non-structural protein. Vet Immunol Immunopathol 179:85–88. https://doi.org/10.1016/j.vetimm.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  42. Qiu Z, Tian W, Yu T et al (2012) Monoclonal antibodies against NS1 protein of goose parvovirus. Hybridoma 31:125–130. https://doi.org/10.1089/hyb.2011.0098

    Article  CAS  PubMed  Google Scholar 

  43. Wan C, Chen H, Fu Q et al (2015) Genomic characterization of goose parvovirus and muscovy duck parvovirus co-infection in Fujian, China. Kafkas Univ Vet Fak Derg 21:923–928. https://doi.org/10.9775/kvfd.2015.13848

    Article  Google Scholar 

  44. Liu W-J, Yang Y-T, Zou H-Y et al (2020) Identification of recombination in novel goose parvovirus isolated from domesticated Jing-Xi partridge ducks in South China. Virus Genes 56:600–609. https://doi.org/10.1007/s11262-020-01781-1

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Ling J, Wang Z et al (2017) Molecular characterization of a novel Muscovy duck parvovirus isolate: evidence of recombination between classical MDPV and goose parvovirus strains. BMC Vet Res 13:1–10. https://doi.org/10.1186/s12917-017-1238-6

    Article  CAS  Google Scholar 

  46. Yang Z, Bielawski JR (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503. https://doi.org/10.1016/S0169-5347(00)01994-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stamenković GG, Ćirković VS, Šiljić MM et al (2016) Substitution rate and natural selection in parvovirus B19. Sci Rep 6:35759. https://doi.org/10.1038/srep35759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Battilani M, Scagliarini A, Ciulli S et al (2006) High genetic diversity of the VP2 gene of a canine parvovirus strain detected in a domestic cat. Virology 352:22–26. https://doi.org/10.1016/j.virol.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  49. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000304

    Article  PubMed  PubMed Central  Google Scholar 

  50. Estevez C, Villegas P (2004) Sequence analysis, viral rescue from infectious clones and generation of recombinant virions of the avian adeno-associated virus. Virus Res 105(2):195–208

    Article  CAS  PubMed  Google Scholar 

  51. Shehata AA, Gerry DM, Heenemann K, Halami MY, Tokarzewski S, Wencel P, Vahlenkamp TW (2016) Goose parvovirus and circovirus coinfections in ornamental ducks. Avian Dis 60(2):516–522

    Article  PubMed  Google Scholar 

  52. Li P, Lin S, Zhang R, Chen J, Sun D, Lan J, Song S, Xie Z, Jiang S (2018) Isolation and characterization of novel goose parvovirus-related virus reveal the evolution of waterfowl parvovirus. Transbound Emerg Dis 65(2):e284–e295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study did not receive any financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turhan Turan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal participants

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isidan, H., Turan, T., Atasoy, M.O. et al. Molecular analysis of goose parvovirus field strains from a Derzsy’s disease outbreak reveals local European-associated variants. Arch Virol 166, 1931–1942 (2021). https://doi.org/10.1007/s00705-021-05086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05086-y

Navigation