Skip to main content
Log in

A highly sensitive colorimetric DNA sensor for MicroRNA-155 detection: leveraging the peroxidase-like activity of copper nanoparticles in a double amplification strategy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel and highly sensitive colorimetric DNA sensor for determination of miRNA-155 at attomolar levelsis presented that combines the peroxidase-like activity of copper nanoparticles (CuNPs) with the hybridization chain reaction (HCR) . The utilization of CuNPs offers advantages such as strong interaction with double-stranded DNA, excellent molecular recognition, and mimic catalytic activity. Herein, a capture probe DNA (P1) was immobilized on carboxylated magnetic beads (MBs), allowing for amplified immobilization due to the 3D surface. Subsequently, the presence of the target microRNA-155 led to the formation of a sandwich structure (P2/microRNA-155/P1/MBs) when P2 was introduced to the modified P1/MBs. The HCR reaction was then triggered by adding H1 and H2 to create a super sandwich (H1/H2)n. Following this, Cu2+ ions were attracted to the negatively charged phosphate groups of the (H1/H2)n and reduced by ascorbic acid, resulting in the formation of CuNPs, which were embedded into the grooves of the (H1/H2)n. The peroxidase-like activity of CuNPs catalyzed the oxidation reaction of 3,3',5,5'-Tetramethylbenzidine (TMB), resulting in a distinct blue color measured at 630 nm. Under optimal conditions, the colorimetric biosensor exhibited a linear response to microRNA–155 concentrations ranging from 80 to 500 aM, with a detection limit of 22 aM, and discriminate against other microRNAs. It was also successfully applied to the determination of microRNA–155 levels in spiked human serum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen Y-X, Huang K-J, Niu K-X (2018) Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens Bioelectron 99:612–624

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Yang P, Wang X-F (2014) Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol 24:153–160

    Article  CAS  PubMed  Google Scholar 

  3. Higgs G, Slack F (2013) The multiple roles of microRNA-155 in oncogenesis. J Clin Bioinforma 3:1–8

    Article  Google Scholar 

  4. Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T (2011) Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology 79:313–320

    Article  Google Scholar 

  5. Zadeh MM, Motamed N, Ranji N, Majidi M, Falahi F (2016) Silibinin-induced apoptosis and downregulation of microRNA-21 and microRNA-155 in MCF-7 human breast cancer cells. J Breast Cancer 19:45–52

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leng R-X, Pan H-F, Qin W-Z, Chen G-M, Ye D-Q (2011) Role of microRNA-155 in autoimmunity. Cytokine Growth Factor Rev 22:141–147

    Article  CAS  PubMed  Google Scholar 

  7. Mahesh G, Biswas R (2019) MicroRNA-155: a master regulator of inflammation. J Interferon Cytokine Res 39:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non–small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704

    Article  CAS  PubMed  Google Scholar 

  9. Moustakim H, Mohammadi H, Amine A (2022) Electrochemical DNA biosensor based on immobilization of a non-modified ssDNA using phosphoramidate-bonding strategy and pencil graphite electrode modified with AuNPs/CB and self-assembled cysteamine monolayer. Sensors 22:9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chahri I, Karrat A, Mohammadi H, Amine A (2023) Development of a new route for the immobilization of unmodified single-stranded DNA on chitosan beads and detection of released guanine after hydrolysis. Molecules 28:2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H (2020) Electrochemical biosensors for detection of microRNA as a cancer biomarker: Pros and cons. Biosensors 10:186

    Article  PubMed  PubMed Central  Google Scholar 

  12. El Aamri M, Mohammadi H, Amine A (2023) Development of a novel electrochemical sensor based on functionalized carbon black for the detection of guanine released from DNA hydrolysis. Electroanalysis 35:e202100613

    Article  Google Scholar 

  13. Wang Y, Yang Q, Gao Z, Dong H (2022) Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosens Bioelectron 212:114423

    Article  CAS  PubMed  Google Scholar 

  14. Aamri ME, Mohammadi H, Amine A (2022) Novel label-free colorimetric and electrochemical detection for MiRNA-21 based on the complexation of molybdate with phosphate. Microchem J 182:107851. https://doi.org/10.1016/j.microc.2022.107851

    Article  CAS  Google Scholar 

  15. Mohammadi H, Amine A (2018) Spectrophotometric and electrochemical determination of MicroRNA-155 using sandwich hybridization magnetic beads. Anal Lett 51:411–423

    Article  CAS  Google Scholar 

  16. Lamprou E, Sotiriou M, Kalligosfyri PM, Kalogianni DP, Christopoulos TK (2023) A universal lateral flow assay for microRNA visual detection in urine samples. Talanta 262:124682

    Article  CAS  PubMed  Google Scholar 

  17. Mohammadi H, Yammouri G, Amine A (2019) Current advances in electrochemical genosensors for detecting microRNA cancer markers. Curr Opin Electrochem 16:96–105. https://doi.org/10.1016/j.coelec.2019.04.030

    Article  CAS  Google Scholar 

  18. Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2020) Femtomolar direct voltammetric determination of circulating miRNAs in sera of cancer patients using an enzymeless biosensor. Anal Chim Acta 1104:188–198

    Article  CAS  PubMed  Google Scholar 

  19. Baachaoui S, Mastouri M, Meftah M, Yaacoubi-Loueslati B, Raouafi N (2023) A Magnetoelectrochemical bioassay for highly sensitive sensing of point mutations in Interleukin-6 gene using TMB as a hybridization intercalation indicator. Biosensors 13:240. https://doi.org/10.3390/bios13020240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Granados-Riveron JT, Aquino-Jarquin G (2021) CRISPR/Cas13-based approaches for ultrasensitive and specific detection of microRNAs. Cells 10:1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Xie G, Lv S, Xiong Q, Xu H (2023) Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. TrAC Trends Anal Chem 160:116953

    Article  CAS  Google Scholar 

  22. Gao Y, Huang K, Wang F, Hou Y, Wang B, Xu J, Shuai H, Li G (2023) The self-powered electrochemical biosensing platform with multi-amplification strategy for ultrasensitive detection of microRNA-155. Anal Chim Acta 1239:340702

    Article  CAS  PubMed  Google Scholar 

  23. Weng S, Lin D, Lai S, Tao H, Chen T, Peng M, Qiu S, Feng S (2022) Highly sensitive and reliable detection of microRNA for clinically disease surveillance using SERS biosensor integrated with catalytic hairpin assembly amplification technology. Biosens Bioelectron 208:114236

    Article  CAS  PubMed  Google Scholar 

  24. Luo Z, Li Y, Zhang P, He L, Feng Y, Feng Y, Qian C, Tian Y, Duan Y (2022) Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. TrAC Trends Anal Chem 151:116582

    Article  CAS  Google Scholar 

  25. Mohan B, Kumar S, Kumar S, Modi K, Tyagi D, Papukashvili D, Rcheulishvili N, Pombeiro AJ (2023) Nanomaterials for miRNA detection: the hybridization chain reaction strategy. Sens Diagn 2:78–89

    Article  CAS  Google Scholar 

  26. Gao G, Hu J, Li Z, Xu Q, Wang C-S, Jia H-M, Zhou H, Lin P, Zhao W-W (2022) Hybridization chain reaction for regulating surface capacitance of organic photoelectrochemical transistor toward sensitive miRNA detection. Biosens Bioelectron 209:114224

    Article  CAS  PubMed  Google Scholar 

  27. Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X (2014) Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem 86:2124–2130

    Article  CAS  PubMed  Google Scholar 

  28. Gao X, Xu L-P, Wu T, Wen Y, Ma X, Zhang X (2016) An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. Talanta 146:648–654

    Article  CAS  PubMed  Google Scholar 

  29. Mandli J, Mohammadi H, Amine A (2017) Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles. Bioelectrochemistry 116:17–23

    Article  CAS  PubMed  Google Scholar 

  30. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  PubMed  Google Scholar 

  31. Aamri ME, Mohammadi H, Amine A (2023) Paper-based colorimetric detection of miRNA-21 using pre-activated nylon membrane and peroxidase-mimetic activity of cysteamine-capped gold nanoparticles. Biosensors 13:74. https://doi.org/10.3390/bios13010074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang H, Wan K, Shi X (2019) Recent advances in nanozyme research. Adv Mater 31:1805368

    Article  CAS  Google Scholar 

  33. Robert A, Meunier B (2022) How to define a nanozyme. ACS Nano 16:6956–6959

    Article  CAS  PubMed  Google Scholar 

  34. Wu J, Lv W, Yang Q, Li H, Li F (2021) Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme. Biosens Bioelectron 171:112707

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Zhang C, He Y, Gao J, Li W, Cheng L, Sun F, Xia P, Wang Q (2022) A generic and non-enzymatic electrochemical biosensor integrated molecular beacon-like catalyzed hairpin assembly circuit with MOF@ Au@ G-triplex/hemin nanozyme for ultrasensitive detection of miR-721. Biosens Bioelectron 203:114051

    Article  CAS  PubMed  Google Scholar 

  36. Tian L, Qi J, Oderinde O, Yao C, Song W, Wang Y (2018) Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microRNA biosensor. Biosens Bioelectron 110:110–117

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Zheng Y, Ding D, Guo R (2017) Switching peroxidase-mimic activity of protein stabilized platinum nanozymes by sulfide ions: substrate dependence, mechanism, and detection. Langmuir 33:13811–13820

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, Chen W, Wang C, Xing D (2023) Overview of nanozymes with phosphatase-like activity. Biosens Bioelectron 237:115470

    Article  CAS  PubMed  Google Scholar 

  39. Huang Y, Liu Z, Liu C, Ju E, Zhang Y, Ren J, Qu X (2016) Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew Chem 128:6758–6762

    Article  Google Scholar 

  40. Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A (2017) Nanozyme applications in biology and medicine: an overview. Artif Cells Nanomed Biotechnol 45:1069–1076

    Article  CAS  Google Scholar 

  41. Qing Z, Bai A, Xing S, Zou Z, He X, Wang K, Yang R (2019) Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 137:96–109

    Article  CAS  PubMed  Google Scholar 

  42. Liu R, Wang C, Hu J, Su Y, Lv Y (2018) DNA-templated copper nanoparticles: versatile platform for label-free bioassays. TrAC Trends Anal Chem 105:436–452

    Article  CAS  Google Scholar 

  43. Chen C-A, Chen S-C, Shiddiky MJ, Chen C-F, Wu KC-W (2020) DNA-templated copper nanoprobes: overview, feature, application, and current development in detection technologies. Chem Rec 20:174–186

    Article  CAS  PubMed  Google Scholar 

  44. Cao Q, Li J, Wang E (2019) Recent advances in the synthesis and application of copper nanomaterials based on various DNA scaffolds. Biosens Bioelectron 132:333–342

    Article  CAS  PubMed  Google Scholar 

  45. Alipour M, Jalili S, Shirzad H, Ansari Dezfouli E, Fouani MH, Sadeghan AA, Bardania H, Hosseinkhani S (2020) Development of dual-emission cluster of Ag atoms for genetically modified organisms detection. Microchim Acta 187:628. https://doi.org/10.1007/s00604-020-04591-2

    Article  CAS  Google Scholar 

  46. Miao P, Zhang T, Xu J, Tang Y (2018) Electrochemical detection of miRNA combining T7 exonuclease-assisted cascade signal amplification and DNA-templated copper nanoparticles. Anal Chem 90:11154–11160

    Article  CAS  PubMed  Google Scholar 

  47. Xu F, Shi H, He X, Wang K, He D, Guo Q, Qing Z, Yan L, Ye X, Li D (2014) Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRNA detection. Anal Chem 86:6976–6982

    Article  CAS  PubMed  Google Scholar 

  48. Vargas E, Povedano E, Montiel VR-V, Torrente-Rodríguez RM, Zouari M, Montoya JJ, Raouafi N, Campuzano S, Pingarrón JM (2018) Single-step incubation determination of miRNAs in cancer cells using an amperometric biosensor based on competitive hybridization onto magnetic beads. Sensors 18:863

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Meng W, Chen X, Zhang Y (2020) DNA-templated copper nanoparticles as signalling probe for electrochemical determination of microRNA-222. Microchim Acta 187:1–9

    Google Scholar 

  50. Liao H, Hu L, Zhang Y, Yu X, Liu Y, Li R (2018) A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters. Microchim Acta 185:1–6

    Article  CAS  Google Scholar 

  51. Kaur P, Thakur R, Chaudhury A (2016) Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev 9:33–38

    Article  CAS  Google Scholar 

  52. Tang Y, Liu M, Zhao Z, Li Q, Liang X, Tian J, Zhao S (2019) Fluorometric determination of microRNA-122 by using ExoIII-aided recycling amplification and polythymine induced formation of copper nanoparticles. Microchim Acta 186:133. https://doi.org/10.1007/s00604-019-3237-8

    Article  CAS  Google Scholar 

  53. Chi B-Z, Liang R-P, Qiu W-B, Yuan Y-H, Qiu J-D (2017) Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye. Biosens Bioelectron 87:216–221. https://doi.org/10.1016/j.bios.2016.08.042

    Article  CAS  PubMed  Google Scholar 

  54. Shuofeng L, Fangfang W, Wang C, Wang Z, Wu Q (2023) Sensitive detection of microRNA based on high-fidelity CRISPR/Cas13a trans cleavage activity coupled with template-free DNA extension-induced strongly emitting copper nanoparticles. Sens Actuators B Chem 374:132848. https://doi.org/10.1016/j.snb.2022.132848

    Article  CAS  Google Scholar 

  55. Xu F, Qiao Z, Luo L, He X, Lei Y, Tang J, Shi H, Wang K (2022) A label-free cyclic amplification strategy for microRNA detection by coupling graphene oxide-controlled adsorption with superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta 243:123323. https://doi.org/10.1016/j.talanta.2022.123323

    Article  CAS  PubMed  Google Scholar 

  56. Xu F, Luo L, Shi H, He X, Lei Y, Tang J, He D, Qiao Z, Wang K (2018) Label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy. Anal Chim Acta 1010:54–61. https://doi.org/10.1016/j.aca.2018.01.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Moroccan Ministry of Higher Education, Scientific Research and Innovation and the OCP Foundation « APRD research program 2021».

Funding

This research was funded by the Moroccan Ministry of Higher Education, Scientific Research and Innovation and the OCP Foundation « APRD research program 2021».

Author information

Authors and Affiliations

Authors

Contributions

Maliana El Aamri: Methodology, Fabrication, Data Curation, Investigation, Writing-Original draft preparation. Hasna Mohammadi: Writing-Review & Editing, Review & Editing, Supervision, funding acquisition. Aziz Amine: Writing-Review & Editing, Review & Editing, Supervision, funding acquisition.

Corresponding author

Correspondence to Aziz Amine.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• An original non-enzymatic bio-assay was developed for an attomolar-level colorimetric microRNA-155 detection.

• The ingenious combination of HCR with the peroxidase-like activity of copper nanoparticles enhances sensitivity while concurrently lowering the detection limit.

• An ultralow detection limit of 22 aM was achieved for the direct detection of microRNA-155 biomarker in human serum samples.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL Aamri, M., Mohammadi, H. & Amine, A. A highly sensitive colorimetric DNA sensor for MicroRNA-155 detection: leveraging the peroxidase-like activity of copper nanoparticles in a double amplification strategy. Microchim Acta 191, 32 (2024). https://doi.org/10.1007/s00604-023-06087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06087-1

Keywords

Navigation