Skip to main content
Log in

Fluorometric determination of microRNA-122 by using ExoIII-aided recycling amplification and polythymine induced formation of copper nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for the determination of microRNA-122 by using terminal deoxynucleotidyl transferase (TdT). It is based on the use of polythymine and exonuclease III-aided cycling amplification. A 3′-phosphorylated hairpin probe 1 (H1) and a hairpin probe 2 (H2) were designed. In the presence of the microRNA, hybridization and enzymatic cleavage will occur and produce lots of 3′-hydroxylated ssDNA which can be tailed by TdT and converted into long polythymine (polyT) sequences. These can be used to synthesize copper nanoparticles (CuNPs) with fluorescence excitation/emission maxima at 350 nm/630 nm. This method shows good selectivity and high sensitivity with a linear response in the 1.00 × 102 fM and 1.00 × 106 fM microRNA concentration range and a 44 fM limit of detection. It was successfully applied to determination of microRNA in spiked serum samples.

A label-free and highly sensitive fluorometric method is described for the assay of microRNA on the basis of target-triggered two-cycle amplification and combining with terminal TdT. It produces a series superlong polyT that can be used for synthesis of copper nanoclusters (CuNCs) displaying red fluorecence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fededa JP, Esk C, Mierzwa B, Stanyte R, Yuan S, Zheng H, Ebnet K, Yan W, Knoblich JA, Gerlich DW (2016) MicroRNA-34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO J 35(22):2386–2398

    Article  CAS  Google Scholar 

  2. Chang J, Davis-Dusenbery BN, Kashima R, Jiang X, Marathe N, Sessa R, Louie J, Gu W, Lagna G, Hata A (2013) Acetylation of p53 stimulates miRNA processing and determines cell survival following genotoxic stress. EMBO J 32(24):3192–3205

    Article  CAS  Google Scholar 

  3. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  Google Scholar 

  4. Wang Y, Zheng D, Tan Q, Wang MX, Gu L-Q (2011) Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 6:668–674

    Article  CAS  Google Scholar 

  5. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12(5):913–920

    Article  CAS  Google Scholar 

  6. Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, Heidecke C-D, Lerch MM, Bagowski CP (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137(6):2136–2145 e2131–2137

    Article  CAS  Google Scholar 

  7. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DSB (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57(1):84–91

    Article  CAS  Google Scholar 

  8. Kaplan M, Kilic T, Guler G, Mandli J, Amine A, Ozsoz M (2017) A novel method for sensitive microRNA detection: Electropolymerization based doping. Biosens Bioelectron 92:770–778

    Article  CAS  Google Scholar 

  9. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  Google Scholar 

  10. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  Google Scholar 

  11. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233

    Article  CAS  Google Scholar 

  12. Wang W, Kong T, Zhang D, Zhang J, Cheng G (2015) Label-free MicroRNA detection based on fluorescence quenching of gold nanoparticles with a competitive hybridization. Anal Chem 87(21):10822–10829

    Article  CAS  Google Scholar 

  13. Xu S, Nie Y, Jiang L, Wang J, Xu G, Wang W, Luo X (2018) Polydopamine Nanosphere/gold nanocluster (au NC)-based Nanoplatform for dual color simultaneous detection of multiple tumor-related MicroRNAs with DNase-I-assisted target recycling amplification. Anal Chem 90(6):4039–4045

    Article  CAS  Google Scholar 

  14. Li R-D, Yin B-C, Ye B-C (2016) Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Biosens Bioelectron 86:1011–1016

    Article  CAS  Google Scholar 

  15. Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P (2018) Label-free platform for MicroRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem 90(2):1098–1103

    Article  CAS  Google Scholar 

  16. Su J, Wang D, Nörbel L, Shen J, Zhao Z, Dou Y, Peng T, Shi J, Mathur S, Fan C, Song S (2017) Multicolor gold-silver Nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection. Anal Chem 89(4):2531–2538

    Article  CAS  Google Scholar 

  17. Ding L, Liu H, Zhang L, Li L, Yu J (2018) Label-free detection of microRNA based on the fluorescence quenching of silicon nanoparticles induced by catalyzed hairpin assembly coupled with hybridization chain reaction. Sensors Actuators B Chem 254:370–376

    Article  CAS  Google Scholar 

  18. Xu F, Shi H, He X, Wang K, He D, Guo Q, Qing Z, L a Y, Ye X, Li D, Tang J (2014) Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRNA detection. Anal Chem 86(14):6976–6982

    Article  CAS  Google Scholar 

  19. Chi B-Z, Liang R-P, Qiu W-B, Yuan Y-H, Qiu J-D (2017) Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye. Biosens Bioelectron 87:216–221

    Article  CAS  Google Scholar 

  20. Xu F, Luo L, Shi H, He X, Lei Y, Tang J, He D, Qiao Z, Wang K (2018) Label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy. Anal Chim Acta 1010:54–61

    Article  CAS  Google Scholar 

  21. Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A (2010) Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed Engl 49(33):5665–5667

    Article  CAS  Google Scholar 

  22. Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X (2013) Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew Chem Int Ed Engl 52(37):9719–9722

    Article  CAS  Google Scholar 

  23. Song C, Yang X, Wang K, Wang Q, Huang J, Liu J, Liu W, Liu P (2014) Label-free and non-enzymatic detection of DNA based on hybridization chain reaction amplification and dsDNA-templated copper nanoparticles. Anal Chim Acta 827:74–79

    Article  CAS  Google Scholar 

  24. Qiu S, Li X, Xiong W, Xie L, Guo L, Lin Z, Qiu B, Chen G (2013) A novel fluorescent sensor for mutational p53 DNA sequence detection based on click chemistry. Biosens Bioelectron 41:403–408

    Article  CAS  Google Scholar 

  25. Hu R, Liu Y-R, Kong R-M, Donovan MJ, Zhang X-B, Tan W, Shen G-L, Yu R-Q (2013) Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label free nuclease enzymedetection. Biosens Bioelectron 42:31–35

    Article  CAS  Google Scholar 

  26. Zhang H, Lin Z, Su X (2015) Label-free detection of exonuclease III by using dsDNA–templated copper nanoparticles as fluorescent probe. Talanta 131:59–63

    Article  CAS  Google Scholar 

  27. Yang X-H, Sun S, Liu P, Wang K-M, Wang Q, Liu J-B, Huang J, He L-L (2014) A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles. Chin Chem Lett 25(1):9–14

    Article  CAS  Google Scholar 

  28. Wang H-B, Zhang H-D, Chen Y, Huang K-J, Liu Y-M (2015) A label-free and ultrasensitive fluorescent sensor for dopamine detection based on double-stranded DNA templated copper nanoparticles. Sensors Actuators B Chem 220:146–153

    Article  CAS  Google Scholar 

  29. Liu R, Wang C, Hu J, Su Y, Lv Y (2018) DNA-templated copper nanoparticles: versatile platform for label-free bioassays. TrAC Trends Anal Chem 105:436–452

    Article  CAS  Google Scholar 

  30. Wang G, Wan J, Zhang X (2017) TTE DNA–cu NPs: enhanced fluorescence and application in a target DNA triggered dual-cycle amplification biosensor. Chem Commun 53(41):5629–5632

    Article  CAS  Google Scholar 

  31. Dong Z-Z, Zhang L, Qiao M, Ge J, Liu A-L, Li Z-H (2016) A label-free assay for T4 polynucleotide kinase/phosphatase activity and its inhibitors based on poly(thymine)-templated copper nanoparticles. Talanta 146:253–258

    Article  CAS  Google Scholar 

  32. He Y, Jiao B (2018) Detection of biotin-streptavidin interactions based on poly(thymine)-templated copper nanoparticles coupled with Exo III-aided DNA recycling amplification. Sensors Actuators B Chem 265:387–393

    Article  CAS  Google Scholar 

  33. Song Q, Wang R, Sun F, Chen H, Wang Z, Na N, Ouyang J (2017) A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens Bioelectron 87:760–763

    Article  CAS  Google Scholar 

  34. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianniao Tian.

Ethics declarations

The authors got the permission for using serum sample of human volunteers from Guilin’s Fifth People’s Hospital (China) according to institutional guidelines. All animal procedures and all experiments were performed in accordance with the Guidelines for Care and Use of Laboratory Animals of Guangxi Normal University (Guilin, China) and approved by the Animal Ethics Committee of China.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.15 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Liu, M., Zhao, Z. et al. Fluorometric determination of microRNA-122 by using ExoIII-aided recycling amplification and polythymine induced formation of copper nanoparticles. Microchim Acta 186, 133 (2019). https://doi.org/10.1007/s00604-019-3237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3237-8

Keywords

Navigation