Skip to main content
Log in

Electrochemically deposited bimetallic SERS substrate for trace sensing of antibiotics

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Electrochemically deposited bimetallic copper-gold nanoparticles on indium tin oxide (Cu-AuNPs on ITO) glass are demonstrated to be a sensitive and reproducible surface-enhanced Raman scattering (SERS) platform. An optimal signal enhancement with reasonably good degree of homogeneity was obtained by tuning the deposition parameters of the electrochemical setup. For Raman active analytes such as malachite green (MG) and rhodamine 6G (R6G), the developed SERS platform yields a limit of detection (LOD) of 0.75 nM. The usability of the proposed SERS platform has been realized through detection of two important antibiotics namely sulfamethoxazole (SFZ) and tetracycline hydrochloride (TCH) commonly used in egg farms. Furthermore, a machine learning (ML)-based model coupled with a dimensionality reduction technique—principal component analysis (PCA)—has been implemented to classify the targeted analytes in egg samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and in the supplementary section.

References

  1. Murray CJ, Ikuta KS, Sharara F et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655

    Article  CAS  Google Scholar 

  2. Mulchandani R, Wang Y, Gilbert M, Van Boeckel TP (2023) Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob Public Health 3:e0001305

    Article  PubMed  PubMed Central  Google Scholar 

  3. Henchion M, Moloney A, Hyland J et al (2021) Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 15:100287

  4. Liu CM, Stegger M, Aziz M et al (2018) Escherichia coli ST131-H 22 as a foodborne uropathogen. MBio 9:e00470–e00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wardyn SE, Forshey BM, Farina SA et al (2015) Swine farming is a risk factor for infection with and high prevalence of carriage of multidrug-resistant Staphylococcus aureus. Clin Infect Dis 61:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agency (EMA) EM (2016) Defined daily doses for animals (DDDvet) and defined course doses for animals (DCDvet): European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). EMA 44:13–18

    Google Scholar 

  7. Sarkar S, Souza MJ, Martin-Jimenez T et al (2023) Tetracycline, sulfonamide, and erythromycin residues in beef, eggs, and honey sold as “antibiotic-free” products in East Tennessee (USA) farmers’ markets. Vet Sci 10:243

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hernández F, Sancho JV, Ibáñez M, Guerrero C (2007) Antibiotic residue determination in environmental waters by LC-MS. TrAC Trends Anal Chem 26:466–485

    Article  Google Scholar 

  9. Blackwell PA, Lützhøft H-CH, Ma H-P et al (2004) Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC–UV and fluorescence detection. Talanta 64:1058–1064

    Article  CAS  PubMed  Google Scholar 

  10. Owusu-Doubreh B, Appaw WO, Abe-Inge V (2022) Antibiotic residues in poultry eggs and its implications on public health: a review. Sci Afr 19:e01456

  11. Sharma B, Frontiera RR, Henry A-I et al (2012) SERS: materials, applications, and the future. Mater Today 15:16–25

    Article  CAS  Google Scholar 

  12. Ding S-Y, You E-M, Tian Z-Q, Moskovits M (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46:4042–4076

    Article  CAS  PubMed  Google Scholar 

  13. Valley N, Greeneltch N, Van Duyne RP, Schatz GC (2013) A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. J Phys Chem Lett 4:2599–2604

    Article  CAS  Google Scholar 

  14. Mungroo NA, Oliveira G, Neethirajan S (2016) SERS based point-of-care detection of food-borne pathogens. Microchim Acta 183:697–707. https://doi.org/10.1007/s00604-015-1698-y

    Article  CAS  Google Scholar 

  15. Panikar SS, Cialla-May D, Haaß T et al (2023) Large-scale assembly and pattern transfer of SERS-active nanoparticles for application in drug monitoring of methotrexate in blood serum. Vib Spectrosc 124:103470

    Article  CAS  Google Scholar 

  16. Lee SJ, Lee H, Begildayeva T et al (2022) Nanogap-tailored Au nanoparticles fabricated by pulsed laser ablation for surface-enhanced Raman scattering. Biosens Bioelectron 197:113766

    Article  CAS  PubMed  Google Scholar 

  17. Fan M, Andrade GF, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25

    Article  CAS  PubMed  Google Scholar 

  18. Ren X, Cheshari EC, Qi J, Li X (2018) Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Microchim Acta 185:1–8

  19. Feng J, Li X, Cheng H et al (2019) A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for the carcinoembryonic antigen. Microchim Acta 186:774. https://doi.org/10.1007/s00604-019-3972-x

    Article  CAS  Google Scholar 

  20. Sarma D, Biswas S, Hatiboruah D et al (2022) 100 GSM paper as an SERS substrate for trace detection of pharmaceutical drugs in an aqueous medium. J Phys D Appl Phys 55:385102

    Article  Google Scholar 

  21. Biswas S, Devi YD, Sarma D et al (2023) Detection and analysis of rotavirus in clinical stool samples using silver nanoparticle functionalized paper as SERS substrate. Spectrochim Acta A Mol Biomol Spectrosc 295:122610

  22. Chamuah N, Hazarika A, Hatiboruah D, Nath P (2017) SERS on paper: an extremely low cost technique to measure Raman signal. J Phys D Appl Phys 50:485601

    Article  Google Scholar 

  23. Liu H, Zhao P, Xiu W et al (2022) SERS paper slip based on 3D dendritic gold nanomaterials coupling with urchin-like nanoparticles for rapid detection of thiram. Sensors Actuators B Chem 355:131264

    Article  CAS  Google Scholar 

  24. Yang G, Fang X, Jia Q et al (2020) Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish. Microchim Acta 187:1–10

    Article  Google Scholar 

  25. Biswas S, Devi YD, Sarma D et al (2022) Gold nanoparticle decorated blu-ray digital versatile disc as a highly reproducible surface-enhanced Raman scattering substrate for detection and analysis of rotavirus RNA in laboratory environment. J Biophotonics 15:e202200138

    Article  CAS  PubMed  Google Scholar 

  26. Chamuah N, Saikia A, Joseph AM, Nath P (2019) Blu-ray DVD as SERS substrate for reliable detection of albumin, creatinine and urea in urine. Sens Actuators B Chem 285:108–115

    Article  CAS  Google Scholar 

  27. Sarma D, Nath KK, Biswas S et al (2023) SERS determination and multivariate classification of antibiotics in chicken meat using gold nanoparticle–decorated electrospun PVA nanofibers. Microchim Acta 190:64

    Article  CAS  Google Scholar 

  28. Chamuah N, Bhuyan N, Das PP et al (2018) Gold-coated electrospun PVA nanofibers as SERS substrate for detection of pesticides. Sens Actuators B Chem 273:710–717

    Article  CAS  Google Scholar 

  29. Song Y, Ma Z, Fang H et al (2020) Au sputtered paper chromatography tandem raman platform for sensitive detection of heavy metal ions. ACS Sens 5:1455–1464. https://doi.org/10.1021/acssensors.0c00395

    Article  CAS  PubMed  Google Scholar 

  30. Radisic A, Vereecken PM, Hannon JB et al (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238–242

    Article  CAS  PubMed  Google Scholar 

  31. Lu Y, Yuan X, Jia C et al (2023) Self-assembled bifunctional copper hydroxide/gold-ordered nanoarray composites for fast, sensitive, and recyclable SERS detection of hazardous benzene vapors. Nanomaterials 13:2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Lu S, Shi G et al (2023) A study on a hybrid SERS substrates based on arrayed gold nanoparticle/graphene/copper cone cavities fabricated by a conical tip indentation. J Mater Res Technol 22:1558–1571

    Article  CAS  Google Scholar 

  33. Xu D, Wang Z, Zhang S et al (2023) Fabrication and SERS activity of high aspect ratio copper nanowires prepared via solid-state ionics method. Phys E: Low-Dimens Syst Nanostructures 153:115789

  34. Chan GH, Zhao J, Hicks EM et al (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952

    Article  CAS  Google Scholar 

  35. Rivera-Rangel RD, Navarro-Segura ME, Arizmendi-Morquecho A, Sánchez-Domínguez M (2020) Electrodeposition of plasmonic bimetallic Ag-Cu nanodendrites and their application as surface-enhanced Raman spectroscopy (SERS) substrates. Nanotechnology 31:465605

  36. Jones T (2023) Fabrication of nanostructured electrodes for electrochemical surface-enhanced Raman spectroscopy (E-SERS): a review. Materials Science and Technology, pp 1–15

    Google Scholar 

  37. Mortimer RJ (2017) Spectroelectrochemistry, methods and instrumentation. In: Lindon JC, Tranter GE, Koppenaal DW (eds) Encyclopedia of spectroscopy and spectrometry, Third edn. Academic Press, Oxford, pp 172–177

    Chapter  Google Scholar 

  38. Clarke O, Marie GS, Brosseau CL (2017) Evaluation of an electrodeposited bimetallic Cu/Ag nanostructured screen printed electrode for electrochemical surface-enhanced Raman spectroscopy (EC-SERS) investigations. J Electrochem Soc 164:B3091

  39. Huan TN, Kim S, Van Tuong P, Chung H (2014) Au–Ag bimetallic nanodendrite synthesized via simultaneous co-electrodeposition and its application as a SERS substrate. RSC Adv 4:3929–3933

    Article  CAS  Google Scholar 

  40. Sivanesan A, Witkowska E, Adamkiewicz W et al (2014) Nanostructured silver–gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst 139:1037–1043. https://doi.org/10.1039/C3AN01924A

    Article  CAS  PubMed  Google Scholar 

  41. Ralbovsky NM, Lednev IK (2020) Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev 49:7428–7453

    Article  CAS  PubMed  Google Scholar 

  42. Soman K, Loganathan R, Ajay V (2009) Machine learning with SVM and other kernel methods. PHI Learning Pvt. Ltd

    Google Scholar 

  43. Dou J, Dawuti W, Li J et al (2023) Rapid detection of serological biomarkers in gallbladder carcinoma using fourier transform infrared spectroscopy combined with machine learning. Talanta 259:124457

    Article  CAS  PubMed  Google Scholar 

  44. Ni Y, Zhu R, Kokot S (2011) Competitive binding of small molecules with biopolymers: a fluorescence spectroscopy and chemometrics study of the interaction of aspirin and ibuprofen with BSA. Analyst 136:4794–4801

    Article  CAS  PubMed  Google Scholar 

  45. Medhi A, Mohanta D (2022) Deciphering highly sensitive non-enzymatic glucose sensor based on nanoscale CuO/PEDOT-MoS2 electrodes in chronoamperometry. ECS Adv 1:046504. https://doi.org/10.1149/2754-2734/ac9324

    Article  Google Scholar 

  46. Wang K, Lin K, Huang X, Chen M (2017) A simple and fast extraction method for the determination of multiclass antibiotics in eggs using LC-MS/MS. J Agric Food Chem 65:5064–5073

    Article  CAS  PubMed  Google Scholar 

  47. R Core Team R (2013) R: a language and environment for statistical computing

    Google Scholar 

  48. Bian J-C, Chen Z-D, Li Z et al (2012) Electrodeposition of hierarchical Ag nanostructures on ITO glass for reproducible and sensitive SERS application. Appl Surf Sci 258:6632–6636

    Article  CAS  Google Scholar 

  49. Bu Y, Lee S (2015) Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine. Microchim Acta 182:1313–1321

    Article  CAS  Google Scholar 

  50. Patze S, Huebner U, Liebold F et al (2017) SERS as an analytical tool in environmental science: the detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup. Anal Chim Acta 949:1–7

    Article  CAS  PubMed  Google Scholar 

  51. Alaboudi A, Basha EA, Musallam I (2013) Chlortetracycline and sulfanilamide residues in table eggs: prevalence, distribution between yolk and white and effect of refrigeration and heat treatment. Food Control 33:281–286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M Gohain, Department of Physics, Tezpur University, for acquiring the FESEM images of SERS substrate. Authors thank Mr. Sritam Biswas of the Department of Physics, Tezpur University for the help with the simulation studies. D. Sarma thanks Gautam Gogoi and Subhir Biswas of the Department of Chemical Science, Tezpur University for helping in the LC-MS analysis.

Funding

D. Sarma expresses gratitude to Tezpur University for its financial assistance through Research and Innovation Grant (DoRD/RIG/10-73/1592-A, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pabitra Nath.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2183 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, D., Medhi, A., Mohanta, D. et al. Electrochemically deposited bimetallic SERS substrate for trace sensing of antibiotics. Microchim Acta 191, 14 (2024). https://doi.org/10.1007/s00604-023-06075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06075-5

Keywords

Navigation