Skip to main content
Log in

CRISPR/Cas12a trans-cleavage triggered by cleavage ligation of dumbbell DNA for specific detection of human 8-oxoguanine DNA glycosylase activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Human 8-oxoguanine DNA glycosylase (hOGG1) is an essential enzyme that recognizes and removes 8-oxoguanine (8-oxoG), a common DNA oxidative damage caused by reactive oxygen species, to maintain genomic integrity of living organisms. Abnormal expression of hOGG1 has been proved to be associated with different diseases such as cancer and neurogenerative disorders, making it a potential biomarker and therapeutic target. In this study, we report the development of  a novel strategy for detecting hOGG1 activity based on CRISPR/Cas12a trans-cleavage triggered by cleavage ligation of a dumbbell DNA probe (DBP) designed with a 3’ overhang and an 8-oxoG modification. When hOGG1 is present, it cleaves the DBP at the 8-oxoG site, forming a 5’ phosphate termini and exposing a single-strand region allowing complementary to the 3’ overhang. After hybridization, the 3’ and 5’ termini in the juxtaposition are ligated by T4 DNA ligase, leading to a closed DBP for CRISPR/Cas12a-crRNA to recognize and initiate the trans-cleavage of the surrounding ssDNAs with fluorophore and quencher. The method achieves a limit of detection (LOD) with 370 μU/mL and high selectivity. Furthermore, it demonstrates a good compatibility for detecting hOGG1 activity in cell lysates, suggesting a good performance for further application in disease diagnosis and scientific research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Poetsch AR (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 18:207–219. https://doi.org/10.1016/j.csbj.2019.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ba X, Aguilera-Aguirre L, Rashid QT, Bacsi A, Radak Z, Sur S, Hosoki K, Hegde ML, Boldogh I (2014) The role of 8-oxoguanine DNA glycosylase-1 in inflammation. Int J Mol Sci. https://doi.org/10.3390/ijms150916975

  3. Bruner SD, Norman DPG, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403:859–866. https://doi.org/10.1038/35002510

    Article  CAS  PubMed  Google Scholar 

  4. David SS, O'Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950. https://doi.org/10.1038/nature05978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mambo E, Chatterjee A, de Souza-Pinto NC, Mayard S, Hogue BA, Hoque MO, Dizdaroglu M, Bohr VA, Sidransky D (2005) Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene 24:4496–4508. https://doi.org/10.1038/sj.onc.1208669

    Article  CAS  PubMed  Google Scholar 

  6. Park J, Chen L, Tockman MS, Elahi A, Lazarus P (2004) The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk. Pharmacogenet Genomics 14:103–109. https://doi.org/10.1097/00008571-200402000-00004

  7. Yuzefovych LV, Kahn AG, Schuler MA, Eide L, Arora R, Wilson GL, Tan M, Rachek LI (2016) Mitochondrial DNA repair through OGG1 activity attenuates breast cancer progression and metastasis. Cancer Res 76:30–34. https://doi.org/10.1158/0008-5472.CAN-15-0692

    Article  CAS  PubMed  Google Scholar 

  8. Fukae J, Takanashi M, Kubo S-i, Nishioka K-i, Nakabeppu Y, Mori H, Mizuno Y, Hattori N (2005) Expression of 8-oxoguanine DNA glycosylase (OGG1) in Parkinson’s disease and related neurodegenerative disorders. Acta Neuropathol 109:256–262. https://doi.org/10.1007/s00401-004-0937-9

    Article  CAS  PubMed  Google Scholar 

  9. Weiss JM, Goode EL, Ladiges WC, Ulrich CM (2005) Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog 42:127–141. https://doi.org/10.1002/mc.20067

    Article  CAS  PubMed  Google Scholar 

  10. Dherin C, Radicella JP, Dizdaroglu M, Boiteux S (1999) Excision of oxidatively damaged DNA bases by the human α-hOgg1 protein and the polymorphic α-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res 27:4001–4007. https://doi.org/10.1093/nar/27.20.4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song X, Yang C, Yuan R, Xiang Y (2022) Electrochemical label-free biomolecular logic gates regulated by distinct inputs. Biosens Bioelectron 202:114000. https://doi.org/10.1016/j.bios.2022.114000

    Article  CAS  PubMed  Google Scholar 

  12. Yang D, Mei Q, Tang Y, Miao P (2019) A ratiometric electrochemical assay for human 8-oxoguanine DNA glycosylase amplified by hybridization chain reaction. Electrochem Commun 103:37–41. https://doi.org/10.1016/j.elecom.2019.05.006

    Article  CAS  Google Scholar 

  13. Wu Z, Wu Z-K, Tang H, Tang L-J, Jiang J-H (2013) Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay. Anal Chem 85:4376–4383. https://doi.org/10.1021/ac303575f

    Article  CAS  PubMed  Google Scholar 

  14. Wang L-j, Lu Y-y, Zhang C-y (2020) Construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. Chem Sci 11:587–595. https://doi.org/10.1039/C9SC04738G

    Article  CAS  PubMed  Google Scholar 

  15. Kong X-J, Wu S, Cen Y, Yu R-Q, Chu X (2016) “Light-up” sensing of human 8-oxoguanine DNA glycosylase activity by target-induced autocatalytic DNAzyme-generated rolling circle amplification. Biosens Bioelectron 79:679–684. https://doi.org/10.1016/j.bios.2015.12.106

    Article  CAS  PubMed  Google Scholar 

  16. Wang L-j, Liang L, Liu B-j, Jiang B, Zhang C-y (2021) A controlled T7 transcription-driven symmetric amplification cascade machinery for single-molecule detection of multiple repair glycosylases. Chem Sci 12:5544–5554. https://doi.org/10.1039/D1SC00189B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen K, Shen Z, Wang G, Gu W, Zhao S, Lin Z, Liu W, Cai Y, Mushtaq G, Jia J, Wan CC, Yan T (2022) Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.986233

  18. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439. https://doi.org/10.1126/science.aar6245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tao Y, Yi K, Wang H, Li K, Li M (2022) Metal nanoclusters combined with CRISPR-Cas12a for hepatitis B virus DNA detection. Sens Actuators B 361:131711. https://doi.org/10.1016/j.snb.2022.131711

    Article  CAS  Google Scholar 

  20. Yuan T, Mukama O, Li Z, Chen W, Zhang Y, de Dieu HJ, Zhang Y, Zeng R, Nie C, He Z, Zeng L (2020) A rapid and sensitive CRISPR/Cas12a based lateral flow biosensor for the detection of Epstein–Barr virus. Analyst 145:6388–6394. https://doi.org/10.1039/D0AN00663G

    Article  CAS  PubMed  Google Scholar 

  21. Li C-Y, Zheng B, Liu Y-H, Gao J-L, Zheng M-Q, Pang D-W, Tang H-W (2020) A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosens Bioelectron 169:112650. https://doi.org/10.1016/j.bios.2020.112650

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Peng Y, Li S, Han D, Ren S, Qin K, Zhou H, Han T, Gao Z (2023) The development of a fluorescence/colorimetric biosensor based on the cleavage activity of CRISPR-Cas12a for the detection of non-nucleic acid targets. J Hazard Mater 449:131044. https://doi.org/10.1016/j.jhazmat.2023.131044

    Article  CAS  PubMed  Google Scholar 

  23. Xiong Y, Zhang J, Yang Z, Mou Q, Ma Y, Xiong Y, Lu Y (2020) Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J Am Chem Soc 142:207–213. https://doi.org/10.1021/jacs.9b09211

    Article  CAS  PubMed  Google Scholar 

  24. Zhao X, Li S, Liu G, Wang Z, Yang Z, Zhang Q, Liang M, Liu J, Li Z, Tong Y, Zhu G, Wang X, Jiang L, Wang W, Tan G-Y, Zhang L (2021) A versatile biosensing platform coupling CRISPR–Cas12a and aptamers for detection of diverse analytes. Sci Bull 66:69–77. https://doi.org/10.1016/j.scib.2020.09.004

    Article  CAS  Google Scholar 

  25. Cui C, Lau C-H, Chu LT, Kwong HK, Tin C, Chen T-H (2023) Multimodal detection of flap endonuclease 1 activity through CRISPR/Cas12a trans-cleavage of single-strand DNA oligonucleotides. Biosens Bioelectron 220:114859. https://doi.org/10.1016/j.bios.2022.114859

    Article  CAS  PubMed  Google Scholar 

  26. Cheng X, Xia X, Ren D, Chen Q, Xu G, Wei F, Yang J, Wang L, Hu Q, Zou J, Cen Y (2023) Programmable CRISPR-Cas12a and self-recruiting crRNA assisted dual biosensing platform for simultaneous detection of lung cancer biomarkers hOGG1 and FEN1. Anal Chim Acta 1240:340748. https://doi.org/10.1016/j.aca.2022.340748

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Q, Zhao S, Tian X, Qiu J-G, Zhang C-y (2022) Development of a CRISPR-Cas-based biosensor for rapid and sensitive detection of 8-oxoguanine DNA glycosylase. Anal Chem 94:2119–2125. https://doi.org/10.1021/acs.analchem.1c04453

    Article  CAS  PubMed  Google Scholar 

  28. Dong K, Shu W, Zhang J, Cheng S, Zhang J, Zhao R, Hua T, Zhang W, Wang H (2023) Ultra-sensitive biosensor based on CRISPR-Cas12a and Endo IV coupled DNA hybridization reaction for uracil DNA glycosylase detection and intracellular imaging. Biosens Bioelectron 226:115118. https://doi.org/10.1016/j.bios.2023.115118

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Hong Kong Research Grants Council (11217820 and N_CityU119/19); the Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20210324134006017); and City University of Hong Kong (9678242, 6430620, and 7020072).

Author information

Authors and Affiliations

Authors

Contributions

C.C.: conceptualization, methodology, investigation, data curation, and writing, original draft preparation. T.-H.C.: conceptualization, methodology, supervision, funding acquisition, and writing reviewing and editing.

Corresponding author

Correspondence to Ting-Hsuan Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 388 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Chen, TH. CRISPR/Cas12a trans-cleavage triggered by cleavage ligation of dumbbell DNA for specific detection of human 8-oxoguanine DNA glycosylase activity. Microchim Acta 190, 468 (2023). https://doi.org/10.1007/s00604-023-06050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06050-0

Keywords

Navigation