Skip to main content
Log in

Flower-like molybdenum disulfide/cobalt ferrite composite for the extraction of benzotriazole UV stabilizers in environmental samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Benzotriazole UV stabilizers (BUVSs) are a class of emerging contaminants of concern; the development of rapid and convenient monitoring method for these trace-level pollutants in waters is of crucial significance in environmental science. Here, a novel magnetic flower-like molybdenum disulfide/cobalt ferrite nanocomposite (MoS2/CoFe2O4) was synthesized by hydrothermal reaction. Compared with the conventional Fe3O4-based magnetic composites, the proposed material just required a minimum consumption of Co/Fe towards the equivalent of MoS2 while providing superior magnetization performance. Taking advantages of high adsorption capacity, extraordinary stability, and repeatability in construction, MoS2/CoFe2O4 was applied to the extraction to BUVSs. The enrichment factors of three BUVSs were in the range 164–193 when 20 mL of environmental water sample was loaded on 40 mg of the adsorbent. MoS2/CoFe2O4 could be regenerated and recycled at least 10 cycles of adsorption/desorption with recoveries of 80.1–111%. The method of MoS2/CoFe2O4-based extraction coupled with high-performance liquid chromatography-variable wavelength detector was applied to the monitoring of BUVSs in seawater, lake water, and wastewater, which gave detection limits (S/N = 3) of 0.023–0.030 ng·mL−1 and recoveries of 80.1–110%. The intra-day and inter-day precisions (relative standard deviation, RSDs, n = 3) were in the range 1.6–7.5% and 3.2–11.5%, respectively. The approach is an alternative for efficient and sensitive extraction and determination of trace-level environmental pollutants in waters.

Graphical Abstract 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Montesdeoca-Esponda S, Vega-Morales T, Sosa-Ferrera Z, Santana-Rodríguez JJ (2013) Extraction and determination methodologies for benzotriazole UV stabilizers in personal-care products in environmental and biological samples. TrAC-Trend Anal Chem 51:23–32. https://doi.org/10.1016/j.trac.2013.05.012

    Article  CAS  Google Scholar 

  2. Chisvert A, León-González Z, Tarazona I, Salvador A, Giokas D (2012) An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues. Anal Chim Acta 752:11–29. https://doi.org/10.1016/j.aca.2012.08.051

    Article  CAS  Google Scholar 

  3. Sánchez-Quiles D, Tovar-Sánchez A (2015) Are sunscreens a new environmental risk associated with coastal tourism. Environ Int 83:158–170. https://doi.org/10.1016/j.envint.2015.06.007

    Article  Google Scholar 

  4. Carve M, Nugegoda D, Allinson G, Shimeta J (2021) A systematic review and ecological risk assessment for organic ultraviolet filters in aquatic environments. Environ Int 268:115894. https://doi.org/10.1016/j.envpol.2020.115894

    Article  CAS  Google Scholar 

  5. Liu Y, Guo WL, Guo HS, Ren XH, Xu Q (2020) Cu(II)-doped V2O5 mediated persulfate activation for heterogeneous catalytic degradation of benzotriazole in aqueous solution. Sep Purif Technol 230:115848. https://doi.org/10.1016/j.seppur.2019.115848

    Article  CAS  Google Scholar 

  6. Li ZT, Liang XF, Liu W, Zhao YQ, Yang HT, Li WJ, Adamovsky O, Martyniuk CJ (2020) Elucidating mechanisms of immunotoxicity by benzotriazole ultraviolet stabilizers in zebrafish (Danio rerio): implication of the AHR-IL17/IL22 immune pathway. Environ Pollut 262:114291. https://doi.org/10.1016/j.envpol.2020.114291

    Article  CAS  Google Scholar 

  7. Vimalkumar K, Arun E, Krishna-Kumar S, Poopal RK, Nikhil NP, Subramanian A, Babu-Rajendran R (2018) Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers. Sci Total Environ 625:1351–1360. https://doi.org/10.1016/j.scitotenv.2018.01.042

    Article  CAS  Google Scholar 

  8. Kim JW, Isobe T, Ramaswamy BR, Chang KH, Amano A, Miller TM, Siringan FP, Tanabe S (2011) Contamination and bioaccumulation of benzotriazole ultraviolet stabilizers in fish from Manila Bay, the Philippines using an ultra-fast liquid chromatography-tandem mass spectrometry. Chemosphere 85:751–758. https://doi.org/10.1016/j.chemosphere.2011.06.054

    Article  CAS  Google Scholar 

  9. Lu Z, Sliva AOD, Zhou WJ, Tetreault GR, Solla SRD, Fair PA, Houde M, Muir G, Bossart DCG (2019) Substituted diphenylamine antioxidants and benzotriazole UV stabilizers in blood plasma of fish, turtles, birds and dolphins from North America. Sci Total Environ 647:182–190. https://doi.org/10.1016/j.scitotenv.2018.07.405

    Article  CAS  Google Scholar 

  10. Wang XM, Wang J, Du TT, Kou HX, Du XZ, Lu XQ (2018) Determination of six benzotriazole ultraviolet filters in water and cosmetic samples by graphene sponge-based solid-phase extraction followed by high-performance liquid chromatography. Anal Bioanal Chem 410:6955–6962. https://doi.org/10.1007/s00216-018-1301-6

    Article  CAS  Google Scholar 

  11. Denghel H, Göen T (2020) Determination of the UV absorber 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328) and its oxidative metabolites in human urine by dispersive liquid-liquid microextraction and GC-MS/MS. J Chromatogr B 1144:122071. https://doi.org/10.1016/j.jchromb.2020.122071

    Article  CAS  Google Scholar 

  12. Montesdeoca-Esponda S, Sosa-Ferrera Z, Kabir A, Furton KG, Santana-Rodríguez JJ (2015) Fabric phase sorptive extraction followed by UHPLC-MS/MS for the analysis of benzotriazole UV stabilizers in sewage samples. Anal Bioanal Chem 407:8137–8150. https://doi.org/10.1007/s00216-015-8990-x

    Article  CAS  Google Scholar 

  13. Carpinteiro I, Abuín B, Rodríguez I, Cela R, Ramil M (2010) Headspace solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the sensitive determination of benzotriazole UV stabilizers in water samples. Anal Bioanal Chem 397:829–839. https://doi.org/10.1007/s00216-010-3584-0

    Article  CAS  Google Scholar 

  14. Yang XS, Zhao J, Wang LL, Liu YS, Liu QW, Peng XY, Wang P (2022) Core-shell-structured magnetic covalent organic frameworks for effective extraction of parabens prior to their determination by HPLC. Microchim Acta 189:340. https://doi.org/10.1007/s00604-022-05444-w

    Article  CAS  Google Scholar 

  15. Fan JX, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM (2018) Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) core-shell bio-nanocomposites. Chemosphere 191:315–323. https://doi.org/10.1016/j.chemosphere.2017.10.042

    Article  CAS  Google Scholar 

  16. Huang YF, Zhang WH, Bai MD, Huang XJ (2020) One-pot fabrication of magnetic fluorinated carbon nanotubes adsorbent for efficient extraction of perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids in environmental water samples. Chem Eng J 380:122392. https://doi.org/10.1016/j.cej.2019.122392

    Article  CAS  Google Scholar 

  17. Shao YM, Zhou LC, Wu Q, Bao C, Liu MZ (2017) Preparation of novel magnetic molecular imprinted polymers nanospheres via reversible addition-fragmentation chain transfer polymerization for selective and efficient determination of tetrabromobisphenol A. J Hazard Mater 339:418–426. https://doi.org/10.1016/j.jhazmat.2017.06.017

    Article  CAS  Google Scholar 

  18. Aghagoli MJ, Shemirani F (2017) Hybrid nanosheets composed of molybdenum disulfide and reduced graphene oxide for enhanced solid phase extraction of Pb(II) and Ni(II). Microchim Acta 184:237–244. https://doi.org/10.1007/s00604-016-2000-7

    Article  CAS  Google Scholar 

  19. Liu JF, Lin H, Dong YB, He YH, Liu W, Shi YY (2021) The effective adsorption of tetracycline onto MoS2@Zeolite-5: adsorption behavior and interfacial mechanism. J Environ Chem Eng 9:105912. https://doi.org/10.1016/j.jece.2021.105912

    Article  CAS  Google Scholar 

  20. Pytlakowska K, Kocot K, Pilch M, Zubko M (2020) Ultrasound-assisted dispersive micro-solid phase extraction using molybdenum disulfide supported on reduced graphene oxide for energy dispersive X-ray fluorescence spectrometric determination of chromium species in water. Microchim Acta 187:542. https://doi.org/10.1007/s00604-020-04476-4

    Article  CAS  Google Scholar 

  21. Yuan WQ, Kuang JZ, Yu MM, Huang ZY, Zuo ZL, Zhu LP (2021) Facile preparation of MoS2@Kaolin composite by one-step hydrothermal method for efficient removal of Pb (II). J Hazard Mater 405:124261. https://doi.org/10.1016/j.jhazmat.2020.124261

    Article  CAS  Google Scholar 

  22. Zhao YF, Wu R, Yu H, Li JK, Liu LQ, Wang SS, Chen XF, Chan TWD (2020) Magnetic solid-phase extraction of sulfonamide antibiotics in water and animal-derived food samples using core-shell magnetite and molybdenum disulfide nanocomposite adsorbent. J Chromatogr A 1610:460543. https://doi.org/10.1016/j.chroma.2019.460543

    Article  CAS  Google Scholar 

  23. Song HJ, You SS, Jia XH, Yang J (2015) MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram Int 41:13896–13902. https://doi.org/10.1016/j.ceramint.2015.08.023

    Article  CAS  Google Scholar 

  24. Yang SY, Li Q, Chen L, Chen ZS, Pu ZX, Wang HH, Yu SJ, Hu BW, Chen JR, Wang XK (2019) Ultrahigh sorption and reduction of Cr(VI) by two novel core-shell composites combined with Fe3O4 and MoS2. J Hazard Mater 379:120797. https://doi.org/10.1016/j.jhazmat.2019.120797

    Article  CAS  Google Scholar 

  25. Zhang WD, Li LD, Zhu WF, Yan HX, Qi SH (2017) Preparation and microwave absorbing performance of MoS2@Fe3O4@PANI composites. J Mater Sci 28:15488–15494. https://doi.org/10.1007/s10854-017-7436-y

    Article  CAS  Google Scholar 

  26. Song YH, Lu M, Huang B, Wang DL, Wang G, Zhou L (2018) Decoration of defective MoS2 nanosheets with Fe3O4 nanoparticles as superior magnetic adsorbent for highly selective and efficient mercury ions (Hg2+) removal. J Alloy Compd 737:113–121. https://doi.org/10.1016/j.jallcom.2017.12.087

    Article  CAS  Google Scholar 

  27. Zhang QS, Cao XL, Zhang ZP, Yin JG (2020) Preparation of magnetic flower-like molybdenum disulfide hybrid materials for the extraction of organophosphorus pesticides from environmental water samples. J Chromatogr A 1631:461583. https://doi.org/10.1016/j.chroma.2020.461583

    Article  CAS  Google Scholar 

  28. Kumar ASK, Jiang SJ, Warchoł JK (2017) Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III). ACS Omega 2:6187–6200. https://doi.org/10.1021/acsomega.7b00757

    Article  CAS  Google Scholar 

  29. Srivastava V, Kohout T, Silanpää M (2016) Potential of cobalt ferrite nanoparticles (CoFe2O4) for remediation of hexavalent chromium from synthetic and printing press wastewater. J Environ Chem Eng 4:2922–2932. https://doi.org/10.1016/j.jece.2016.06.002

    Article  CAS  Google Scholar 

  30. Taei M, Hasanpour F, Salavati H, Mohammadian S (2016) Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator. Microchim Acta 183:49–56. https://doi.org/10.1007/s00604-015-1588-3

    Article  Google Scholar 

  31. Ren BY, Shen W, Li L, Wu SZ, Wang W (2018) 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes. Appl Surf Sci 447:711–723. https://doi.org/10.1016/j.apsusc.2018.04.064

    Article  CAS  Google Scholar 

  32. Wang J, Wang PY, Wang HH, Dong JF, Chen WY, Wang XX, Wang SH, Hayat T, Alsaedi A, Wang XK (2017) Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium VI) Acs Sustain. Chem Eng 5:7165–7174. https://doi.org/10.1021/acssuschemeng.7b01347

    Article  CAS  Google Scholar 

  33. Li Q, Wang PF, Wang C, Hu B, Wang X, Li DD (2023) Benzotriazole UV stabilizer-induced genotoxicity in freshwater benthic clams: a survey on apoptosis, oxidative stress, histopathology and transcriptomics. Sci Total Environ 857:159055. https://doi.org/10.1016/j.scitotenv.2022.159055

    Article  CAS  Google Scholar 

  34. Fischer C, Leibold E, Hiller J, Göen T (2023) Human metabolism and excretion kinetics of benzotriazole UV stabilizer UV-327 after single oral administration. Arch Toxicol 97:165–176. https://doi.org/10.1007/s00204-022-03401-3

    Article  CAS  Google Scholar 

  35. Liang XF, Adamovsky O, Souders IICL, Martyniuk CJ (2019) Biological effects of benzotriazole ultraviolet stabilizers UV-234 and UV-320 in early-staged zebrafish (Danio rerio). Environ Pollut 245:272–281. https://doi.org/10.1016/j.envpol.2018.10.130

    Article  CAS  Google Scholar 

  36. Wang Z, He M, Chen BB, Hu B (2020) Azo-linked porous organic polymers/polydimethylsiloxane coated stir bar for extraction of benzotriazole ultraviolet absorbers from environmental water and soil samples followed by high performance liquid chromatography-diode array detection. J Chromatogr A 1616:460793. https://doi.org/10.1016/j.chroma.2019.460793

    Article  CAS  Google Scholar 

  37. Zhang QL, You LN, Chen BB, He M, Hu B (2021) Reduced graphene oxide coated nickel foam for stir bar sorptive extraction of benzotriazole ultraviolet absorbents from environmental water. Talanta 231:122332. https://doi.org/10.1016/j.talanta.2021.122332

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 82073608) and National Natural Science Foundation of Hebei, China (grant number: H2022209025).

Author information

Authors and Affiliations

Authors

Contributions

Zi-Yang Zhang: Conceptualization, investigation, methodology, formal analysis, validation, writing—original draft. Yi-Heng Xu: Methodology, validation, project administration. Ke-Yan Chen: Data curation, validation, software, visualization. Mei-Hang Zhang: Software, investigation. Chun-Yan Meng: Project administration, visualization. Xue-Sheng Wang: Software, resources. Man-Man Wang: Funding acquisition, supervision, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Man-Man Wang.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1453 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZY., Xu, YH., Chen, KY. et al. Flower-like molybdenum disulfide/cobalt ferrite composite for the extraction of benzotriazole UV stabilizers in environmental samples. Microchim Acta 190, 75 (2023). https://doi.org/10.1007/s00604-023-05658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05658-6

Keywords

Navigation