Skip to main content

Advertisement

Log in

Colorimetric and handheld pH meter dual-signal readout platform for E. coli detection based on a cascade reaction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-signal readout has been designed detecting platform based on a cascade reaction for Escherichia coli (E. coli) detection by using colorimetric approach and a handheld pH meter. The immunoreaction was conducted using polydopamine@copper ferrite-Ag nanoparticles (PDA@CuFe2O4-Ag NP) and a glucose oxidase (GOD)–conjugated graphene oxide-gold nanosheet composite (GOD-GO/Au NS) to synthesize a sandwich complex mode between targets. Together with the formation of immune complexes, the GOD-GO/Au NS can catalyze glucose to produce gluconic acid and hydrogen peroxide (H2O2). The gluconic acid produced altered the pH of the detection solution. Since the PDA@CuFe2O4-Ag NP have good peroxidase-like activity, they can catalyze the oxidation of TMB to the blue product oxTMB once H2O2 is produced in the reaction system, and the absorbance change of oxTMB at 652 nm can be recorded using ultraviolet–visible (UV–Vis) spectroscopy. Interestingly, the PDA@CuFe2O4-Ag NP composites can consume the generated H2O2, and can create a reaction cycle that promotes glucose oxidation. Under optimal conditions, the proposed dual-channel signal platform is proportional to the logarithm of the E. coli concentration within a range of 102–107 cfu mL−1. Additionally, the devised approach was successfully used to detect E. coli at the required levels in real samples. This dual-mode detection method notably enhances the accuracy and diversity of detection, and curbs the false negative and positive rates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dou LN, Bai YC, Liu MG, Shao SB, Shen JZ, Yu WB et al (2022) ‘Three-to-one’ multi-functional nanocomposite-based lateral flow immunoassay for label-free and dual-readout detection of pathogenic bacteria. Biosens Bioelectron 204:114903

    Article  Google Scholar 

  2. Dou LN, Luo LP, Zhang X, Zhang DH, Wang JL et al (2022) Biomimetic cell model for fluorometric and smartphone colorimetric dual-signal readout detection of bacterial toxin. sens actuators B: Chem 312:127956

    Article  Google Scholar 

  3. Asgari S, Dhital R, Aghvami SA, Mustapha A, Zhang Y, Lin M (2022) Separation and detection of E. coli O157:H7 using a SERS-based microfluidic immunosensor. Microchim Act 189:111

    Article  CAS  Google Scholar 

  4. Bai ZZ, Xu XB, Wang C, Wang T, Sun CY, Liu SX, Li DL (2022) A comprehensive review of detection methods for Escherichia coli O157:H7. Trends Anal Chem 152:116646

    Article  CAS  Google Scholar 

  5. Kaur H, Shorie M, Sabherwal P (2020) Electrochemical aptasensor using boron-carbon nanorods decorated by nickel nanoparticles for detection of E. coli O157:H7. Microchim Acta 187:461

    Article  CAS  Google Scholar 

  6. Kwon J, Kang HY, Yang H (2021) Permeabilization-free β-galactosidase-induction-based electrochemical detection of Escherichia coli. Sens Actuators, B Chem 337:129768

    Article  CAS  Google Scholar 

  7. Yan R, Shou ZX, Chen J, Mou XZ, Wang JH, Li YQ et al (2018) On–off–on gold nanocluster-based fluorescent probe for rapid Escherichia coli differentiation, detection and bactericide screening. ACS Sustain Chem Eng 6:4504–4509

    Article  CAS  Google Scholar 

  8. Hu XT, Li YX, Xu YW, Gan ZY, Zou XB, Shi JY, Huang XW, Li ZH, Li YH (2021) Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem 339:127775

    Article  CAS  Google Scholar 

  9. Chen SF, Chen XQ, Zhang LJ, Gao JJ, Ma Q (2017) Electrochemiluminescence detection of Escherichia coli O157:H7 based on a novel polydopamine surface imprinted polymer biosensor. ACS Appl Mater Interfaces 9:5430–5436

    Article  CAS  Google Scholar 

  10. Asgari S, Dhital R, Aghvami SA, Mustapha A, Zhang Y, Lin MS (2022) Separation and detection of E. coli O157:H7 using a SERS-based microfluidic immunosensor. Microchim Act 189:111

    Article  CAS  Google Scholar 

  11. Dong XX, Shi ZL, Xu CX, Yang C, Chen F, Lei ML, Wang JJ, Cui QN (2020) CdS quantum dots/Au nanoparticles/ZnO nanowire array for self-powered photoelectrochemical detection of Escherichia coli O157:H7. Biosens Bioelectron 149:111843

    Article  CAS  Google Scholar 

  12. Wang C, Xing KY, Zhang GG, Chen WY, Peng J, Hu S, Lai WH (2019) Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanoclusters for detecting E. coli O157:H7. Food Chem 281:91–96

    Article  CAS  Google Scholar 

  13. Gupta R, Kumar A, Kumar S, Pinnaka AK, Singhal NK (2021) Naked eye colorimetric detection of Escherichia coli using aptamer conjugated graphene oxide enclosed gold nanoparticles. Sens Actuators, B Chem 329:129100

    Article  CAS  Google Scholar 

  14. Lai WQ, Guo JQ, Wu QQ, Chen YM, Cai QY, Wu LX, Wang SH, Song J, Tang DP (2020) A novel colorimetric immunoassay based on enzyme-regulated instant generation of Turnbull’s blue for the sensitive determination of ochratoxin A. Analyst 145:2420–2424

    Article  CAS  Google Scholar 

  15. Ren RR, Cai GN, Yu ZZ, Zeng YY, Tang DP (2018) Metal-polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Anal Chem 90:11099–11105

    Article  CAS  Google Scholar 

  16. Lai WQ, Guo JQ, Wang YQ, Lin YX, Ye SA, Zhuang JY, Tang DP (2022) Enzyme-controllable just-in-time production system of copper hexacyanoferrate nanoparticles with oxidase-mimicking activity for highly sensitive colorimetric immunoassay. Talanta 247:123546

    Article  CAS  Google Scholar 

  17. Xie YY, Huang Y, Li JY, Wu JL (2021) A trigger-based aggregation of aptamer-functionalized gold nanoparticles for colorimetry: an example on detection of Escherichia coli O157:H7. Sens Actuators, B Chem 339:129865

    Article  CAS  Google Scholar 

  18. Chen JH, Jackson AA, Rotello VM, Nugen SR (2016) Colorimetric detection of Escherichia coli based on the enzyme-induced metallization of gold nanorods. Small 12:2469–2475

    Article  CAS  Google Scholar 

  19. Huang Y, Ge J, Chen H, Wang Z, Han J, Xie G, Chen SP (2021) Dual-signal readout aptasensor for electrochemical and colorimetric assay using a bifunctional Ni-Fe PBA probe. Sens Actuators, B Chem 327:128871

    Article  CAS  Google Scholar 

  20. Zhu WY, Zhou Y, Tao MD, Yan XQ, Liu Y, Zhou XM (2020) An electrochemical and fluorescence dual-signal assay based on Fe3O4@MnO2 and N-doped carbon dots for determination of hydrogen peroxide. Microchim Act 187:187

    Article  CAS  Google Scholar 

  21. Sun JH, Warden AR, Huang J, Wang WY, Ding XT (2019) Colorimetric and electrochemical detection of Escherichia coli and antibiotic resistance based on a p-benzoquinone-mediated bioassay. Anal Chem 91:7524–7530

    Article  CAS  Google Scholar 

  22. Qian J, Ren CC, Wang CQ, An KQ, Cui HN, Hao N, Wang K (2020) Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1. Biosens Bioelectron 166:112443

    Article  CAS  Google Scholar 

  23. Sun SJ, Zhang LJ, Lu XH, Ren W, Liu CH (2021) Colorimetric and fluorometric dual-readout protein kinase assay by tuning the active surface of nanoceria. Chem Commun 57:8154–8157

    Article  CAS  Google Scholar 

  24. Ren SY, Li QF, Wang JY, Han T, Zhou HY, Gao ZX (2021) Development of a fast and ultrasensitive black phosphorus-based colorimetric/photothermal dual-readout immunochromatography for determination of norfloxacin in tap water and river water. J Hazard Mater 402:123781

    Article  CAS  Google Scholar 

  25. Jiang S, Zhang LX, Li JZ, Ouyang H, Fu ZF (2021) Pressure/colorimetric dual-readout immunochromatographic test strip for point-of-care testing of aflatoxin B1. Talanta 227:122203

    Article  CAS  Google Scholar 

  26. Gao R, Liu BQ, Luo DJ, Su YH, Su LX (2022) Enhanced immunosensor using a handheld pH meter for the point-of-care, sensitive detection of prostate specific antigen. Electroanalysis 34:275–280

    Article  CAS  Google Scholar 

  27. Li X, Li S, Lv Q, Wang C, Liang J, Zhou Z et al (2022) Colorimetric biosensor for visual determination of Golgi protein 73 based on reduced graphene oxide-carboxymethyl chitosan-Hemin/platinum@palladium nanozyme with peroxidase-like activity. Mikrochim Acta 189:392

    Article  CAS  Google Scholar 

  28. Fan L, Tian YS, Lou DD, Wu HA, Cui Y, Gu N, Zhang Y (2019) Catalytic gold–platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting. Anal Methods 11:4586–4592

    Article  Google Scholar 

  29. Chen JX, Ma Q, Li MH, Chao DY, Huang L, Wu WW, Fang YX, Dong SJ (2021) Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat Commun 12:3375

    Article  CAS  Google Scholar 

  30. Su LX, Su YH, Liu BQ (2022) A ratiometric electrochemical strategy based on Fe (III) and Pt (IV) for immobilization-free detection of Escherichia coli. Anal Methods 14:2541–2548

    Article  CAS  Google Scholar 

  31. Hou C, Zhao DY, Chen WQ, Li H, Zhang SF, Liang C (2020) Covalent organic framework-functionalized magnetic CuFe2O4/Ag nanoparticles for the reduction of 4-nitrophenol. Nanomater 10:426

    Article  CAS  Google Scholar 

  32. Zhou LY, Jiang YJ, Gao J, Zhao XQ, Ma L (2012) Graphene oxide as a matrix for the immobilization of glucose oxidase. Appl Biochem Biotechnol 168:1635–1642

    Article  CAS  Google Scholar 

  33. Saravanan S, Sareen N, Ashour H, Sequiera GL, Vadivelu J, Dhingra S et al (2018) Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci Rep 8:15069

    Article  Google Scholar 

  34. Li JZ, Jiang H, Rao XY, Liu ZD, Zhu HY, Xu YB (2019) Point-of-care testing of pathogenic bacteria at the single-colony level via gas pressure readout using aptamer-coated magnetic CuFe2O4 and vancomycin-capped platinum nanoparticles. Anal Chem 91:1494–1500

    Article  CAS  Google Scholar 

  35. Shao C, Liang J, He SH, Luan TQ, Yu JT, Zhao HR, Xu JY, Tian LL (2017) pH-responsive graphene oxide–DNA nanosystem for live cell imaging and detection. Anal Chem 89:5445–5452

    Article  CAS  Google Scholar 

  36. Cao HY, Xie GY, Ma WJ, Yang K, Li HF (2021) Core-shell structured Ag@PDA nanowires and BT@PDA nanoparticles for three-phase flexible polymer nanocomposites with excellent dielectric properties. IEEE Trans Dielectr Electr Insul 28:1909–1916

    Article  CAS  Google Scholar 

  37. Atacan K, Özacar M, Özacar M (2018) Investigation of antibacterial properties of novel papain immobilized on tannic acid modified Ag/CuFe2O4 magnetic nanoparticles. Int J Biol Macromol 109:720–731

    Article  CAS  Google Scholar 

  38. Shumbula NP, Nkabinde SS, Ndala ZB, Mlambo M, Moloto N (2022) Evaluating the antimicrobial activity and cytotoxicity of polydopamine capped silver and silver/polydopamine core-shell nanocomposites. Arab J Chem 15:103798

    Article  CAS  Google Scholar 

  39. Zhang AM, Chang J, Chen YS, Huang ZC, Alfranca G, Zhang Q, Cui DX (2019) Spontaneous implantation of gold nanoparticles on graphene oxide for salivary SERS sensing. Anal Methods 11:5089–5097

    Article  CAS  Google Scholar 

  40. Hu C, Chen ZZ, Wei C, Wan XK, Li WZ, Lin QZ (2021) Au nanoparticles supported on iron-based oxides for soot oxidation: physicochemical properties before and after the reaction. ACS Omega 6:11510–11518

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was received from the National Natural Science Foundation of China (21864007, 21605029), and Guizhou Provincial Natural Science Foundation (Qian Ke He Ji Chu [2020] 1Y042, [2017] 5788 Qian Ke He Platform for Talents, [2018]5781 Qian Ke He Platform for Talents).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqian Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2224 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Liu, B., Cui, Y. et al. Colorimetric and handheld pH meter dual-signal readout platform for E. coli detection based on a cascade reaction. Microchim Acta 190, 51 (2023). https://doi.org/10.1007/s00604-022-05614-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05614-w

Keywords

Navigation