Skip to main content
Log in

Preparation of fluorescein-modified polymer dots and their application in chiral discrimination of lysine enantiomers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fluorescein-functionalized fluorescent polymer dots (F-PDs) were prepared by a facile one-pot method by magnetic stirring under mild conditions based on carboxymethylcellulose (CMC) and fluorescein as the precursors. The obtained F-PDs exhibited a nanoscale size of 3.2 ± 1.1 nm, excellent water solubility, and bright yellow fluorescence emission with a fluorescence quantum yield of 12.0%. The fluorescent probe displays rapid and sensitive chiral discrimination for lysine focused on different complexation abilities between lysine enantiomers and Cu2+. The concentration of L-lysine in the range 4 to 14 mM (R2 = 0.997) was measured by the fluorescence intensity ratio (I513/I429); the exitation wavelength was set to λex = 365 nm. The detection limit was 0.28 mM (3σ/slope). Importantly, this sensor accurately predicted the enantiomeric excess (ee) of lysine enantiomers at the designed concentration (lysine: 20 mM; Cu2+: 10 mM) ranges. The proposed sensor was successfully applied to determine L-lys (recovery: 95.8–101%; RSD: 0.465–3.34%) and ee values (recovery: 98.5–102%; RSD: 2.61–3.21%) in human urine samples using the standard addition method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this work are available from the corresponding author, [Guang Yang], upon reasonable request.

References

  1. Xue YP, Cao CH, Zheng YG (2018) Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 47(4):1516–1561. https://doi.org/10.1039/c7cs00253j

    Article  CAS  Google Scholar 

  2. Zhao Y, Askarpour AN, Sun L, Shi J, Li X, Alu A (2017) Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 8:14180. https://doi.org/10.1038/ncomms14180

    Article  CAS  Google Scholar 

  3. Yan J, Yao Y, Yan S, Gao R, Lu W, He W (2020) Chiral protein supraparticles for tumor suppression and synergistic immunotherapy: an enabling strategy for bioactive supramolecular chirality construction. Nano Lett 20(8):5844–5852. https://doi.org/10.1021/acs.nanolett.0c01757

    Article  CAS  Google Scholar 

  4. Zor E, Bekar N (2017) Lab-in-a-syringe using gold nanoparticles for rapid colorimetric chiral discrimination of enantiomers. Biosens Bioelectron 91:211–216. https://doi.org/10.1016/j.bios.2016.12.031

    Article  CAS  Google Scholar 

  5. Gao P, Xie Z, Zheng M (2020) Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sens Actuators B Chem 319:128265. https://doi.org/10.1016/j.snb.2020.128265

    Article  CAS  Google Scholar 

  6. Li G, Feng L, Zhao P, Xu W, Wang Y, Song A, Hao J (2014) Lysine-based chiral vesicles. J Colloid Interface Sci 431:233–240. https://doi.org/10.1016/j.jcis.2014.05.069

    Article  CAS  Google Scholar 

  7. Zhang M, Qiao J, Zhang S, Qi L (2018) Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine. Talanta 182:595–599. https://doi.org/10.1016/j.talanta.2018.02.035

    Article  CAS  Google Scholar 

  8. Ji J, Qu L, Wang Z, Li G, Feng W, Yang G (2022) A facile electrochemical chiral sensor for tryptophan enantiomers based on multiwalled carbon nanotube/hydroxypropyl-β-cyclodextrin functionalized carboxymethyl cellulose. Microchem J 175:107133. https://doi.org/10.1016/j.microc.2021.107133

    Article  CAS  Google Scholar 

  9. Zhang X, Yin J, Yoon J (2014) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114(9):4918–4959. https://doi.org/10.1021/cr400568b

    Article  CAS  Google Scholar 

  10. Hou X, Song J, Wu Q, Lv H (2021) Chiral carbon quantum dots as fluorescent probe for rapid chiral recognition of isoleucine enantiomers. Anal Chim Acta 1184:339012. https://doi.org/10.1016/j.aca.2021.339012

    Article  CAS  Google Scholar 

  11. Da Silva MS, Vao ER, Temtem M, Mafra L, Caldeira J, Aguiar-Ricardo A, Casimiro T (2010) Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Biosens Bioelectron 25(7):1742–1747. https://doi.org/10.1016/j.bios.2009.12.023

    Article  CAS  Google Scholar 

  12. Namera A, Yashiki M, Nishida M, Kojima T (2012) Direct extract derivatization for determination of amino acids in human urine by gas chromatography and mass spectrometry. J Chromatogr B 41(1):448–479. https://doi.org/10.1016/S1570-0232(02)00075-2

    Article  Google Scholar 

  13. Wang Y, Liu J, Zhao X, Yang C, Ozaki Y, Xu Z, Zhao B, Yu Z (2019) A chiral signal-amplified sensor for enantioselective discrimination of amino acids based on charge transfer-induced SERS. Chem Commun 55(65):9697–9700. https://doi.org/10.1039/c9cc04665h

    Article  CAS  Google Scholar 

  14. Li C, Zeng J, Guo D, Liu L, Xiong L, Luo X, Hu Z, Wu F (2021) Cobalt-doped carbon quantum dots with peroxidase-mimetic activity for ascorbic acid detection through both fluorometric and colorimetric methods. ACS Appl Mater Interfaces 13(41):49453–49461. https://doi.org/10.1021/acsami.1c13198

    Article  CAS  Google Scholar 

  15. Yang G, Hu W, Xia H, Zou G, Zhang Q (2014) Highly selective and reproducible detection of picric acid in aqueous media, based on a polydiacetylene microtube optical waveguide. J Mater Chem A 2(37):15660–15665. https://doi.org/10.1039/c4ta03667k

    Article  Google Scholar 

  16. Consoli GML, Giuffrida ML, Satriano C, Musumeci T, Forte G, Petralia S (2022) A novel facile one-pot synthesis of photothermally responsive carbon polymer dots as promising drug nanocarriers. Chem Commun 58(19):3126–3129. https://doi.org/10.1039/d1cc06530k

    Article  CAS  Google Scholar 

  17. Liu Y, Huangfu M, Wu P, Jiang M, Zhao X, Liang L, Xie L, Bai J, Wang J (2019) Post-imparting bronsted acidity into an amino-functionalized MOF as a bifunctional luminescent turn-ON sensor for the detection of aluminum ions and lysine. Dalton Trans 48(36):13834–13840. https://doi.org/10.1039/c9dt02962a

    Article  CAS  Google Scholar 

  18. Copur F, Bekar N, Zor E, Alpaydin S, Bingol H (2019) Nanopaper-based photoluminescent enantioselective sensing of L-lysine by L-cysteine modified carbon quantum dots. Sens Actuators B Chem 279:305–312. https://doi.org/10.1016/j.snb.2018.10.026

    Article  CAS  Google Scholar 

  19. Seo SH, Kim S, Han MS (2014) Gold nanoparticle-based colorimetric chiral discrimination of histidine: application to determining the enantiomeric excess of histidine. Anal Methods 6(1):73–76. https://doi.org/10.1039/c3ay41735b

    Article  CAS  Google Scholar 

  20. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738. https://doi.org/10.1002/adma.200902825

    Article  CAS  Google Scholar 

  21. Chen Y, Zhang Y, Lyu T, Wang Y, Yang X, Wu X (2019) A facile strategy for the synthesis of water-soluble fluorescent nonconjugated polymer dots and their application in tetracycline detection. J Mater Chem C 7(30):9241–9247. https://doi.org/10.1039/c9tc02738f

    Article  CAS  Google Scholar 

  22. Zhang S, Wang Y, Yang G (2021) A facile strategy for the preparation of carboxymethylcellulose-derived polymer dots and their application to detect tetracyclines. Macromol Chem Phys 222(22):2100267. https://doi.org/10.1002/macp.202100267

    Article  CAS  Google Scholar 

  23. Zhong D, Cao Z, Wu B, Zhang Q, Wang G (2018) Polymer dots of DASA-functionalized polyethyleneimine: synthesis, visible light/pH responsiveness, and their applications as chemosensors. Sens Actuators B Chem 254:385–392. https://doi.org/10.1016/j.snb.2017.07.107

    Article  CAS  Google Scholar 

  24. Zhang H, Dong X, Wang J, Guan R, Cao D, Chen Q (2019) Fluorescence emission of polyethylenimine-derived polymer dots and its application to detect copper and hypochlorite ions. ACS Appl Mater Interfaces 11(35):32489–32499. https://doi.org/10.1021/acsami.9b09545

    Article  CAS  Google Scholar 

  25. Chabok A, Shamsipur M, Yeganeh-Faal A, Molaabasi F, Molaei K, Sarparast M (2019) A highly selective semiconducting polymer dots-based “off-on” fluorescent nanoprobe for iron, copper and histidine detection and imaging in living cells. Talanta 194:752–762. https://doi.org/10.1016/j.talanta.2018.10.072

    Article  CAS  Google Scholar 

  26. Zhong Z, Jia L (2019) Room temperature preparation of water-soluble polydopamine-polyethyleneimine copolymer dots for selective detection of copper ions. Talanta 197:584–591. https://doi.org/10.1016/j.talanta.2019.01.070

    Article  CAS  Google Scholar 

  27. Chen H, Yu J, Men X, Zhang J, Ding Z, Jiang Y, Wu C, Chiu DT (2021) Reversible ratiometric NADH sensing using semiconducting polymer dots. Angew Chem Int Ed 60(21):12007–12012. https://doi.org/10.1002/anie.202100774

    Article  CAS  Google Scholar 

  28. Jia J, Lu W, Cui S, Dong C, Shuang S (2021) Preparation of yellow-emitting carbon dots and their bifunctional detection of tetracyclines and Al3+ in food and living cells. Microchim Acta 188(12):418. https://doi.org/10.1007/s00604-021-05078-4

    Article  CAS  Google Scholar 

  29. Bu W, Xu X, Wang Z, Jin N, Liu L, Liu J, Zhu S, Zhang K, Jelinek R, Zhou D, Sun H, Yang B (2020) Ascorbic acid-PEI carbon dots with osteogenic effects as mir-2861 carriers to effectively enhance bone regeneration. ACS Appl Mater Interfaces 12(45):50287–50302. https://doi.org/10.1021/acsami.0c15425

    Article  CAS  Google Scholar 

  30. Hou J, Wang W, Zhou T, Wang B, Li H, Ding L (2016) Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale 8(21):11185–11193. https://doi.org/10.1039/c6nr02701f

    Article  CAS  Google Scholar 

  31. Liu S, Liu H, Chen Q, Hou J, Yang G (2021) Preparation of boronic acid-modified polymer dots under mild conditions and their applications in pH and glucose detection. Mikrochim Acta 189(1):36. https://doi.org/10.1007/s00604-021-05137-w

    Article  CAS  Google Scholar 

  32. Liu SG, Luo D, Li N, Zhang W, Lei JL, Li NB, Luo HQ (2016) Water-soluble nonconjugated polymer nanoparticles with strong fluorescence emission for selective and sensitive detection of nitro-explosive picric acid in aqueous medium. ACS Appl Mater Interfaces 8(33):21700–21709. https://doi.org/10.1021/acsami.6b07407

    Article  CAS  Google Scholar 

  33. Pathak A, Pv S, Stanley J, Satheesh Babu TG (2019) Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Mikrochim Acta 186(3):157. https://doi.org/10.1007/s00604-019-3270-7

    Article  CAS  Google Scholar 

  34. Kwak BE, Yoo HJ, Kim DH (2019) Quenching-resistant polymer carbon dot preserving emission color consistency in solid-state. Adv Optical Mater 7(23):1900932. https://doi.org/10.1002/adom.201900932

    Article  CAS  Google Scholar 

  35. Xia H, Chen X, Chen X, Cheng J, Liu Y, Chen X, Zhang Q, Zou G (2018) Chiral discrimination of amino acid enantiomers based on different interactions with Cu2+. Sens Actuators B Chem 254:44–51. https://doi.org/10.1016/j.snb.2017.06.143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Fundamental Research Funds for the Central Universities (2572021BU05), Natural Science Foundation of Heilongjiang Province (LH2020E007), the National Natural Science Foundation of China (NSFC, No. 51803021), and China Postdoctoral Science Foundation (2018M641790).

Author information

Authors and Affiliations

Authors

Contributions

Guang Yang: Project administration, Investigation, Funding acquisition, Writing-original draft. Zhongrui Wang: Investigation, Methodology, Writing-original draft. Xinxin Ji, Jingying Zhao, Jie Ji, and Guangyao Li: Investigation, Methodology, Validation. Hongyan Xia and Juan Hou: Investigation, Writing-review and editing, Supervision.

Corresponding authors

Correspondence to Guang Yang or Juan Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17721 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ji, X., Zhao, J. et al. Preparation of fluorescein-modified polymer dots and their application in chiral discrimination of lysine enantiomers. Microchim Acta 190, 29 (2023). https://doi.org/10.1007/s00604-022-05608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05608-8

Keywords

Navigation