Skip to main content
Log in

Determination of β-glucosidase activity using single-particle enumeration with Au@CeO2 nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A visible and sensitive assay for the quantitative detection of β-glucosidase (β-glu) activity based on Au@CeO2 core-shell nanoparticles (Au@CeO2 NPs) is described. As a hydrolytic enzyme, β-glu can promote the hydrolysis of β-arbutin to hydroquinone (HQ), which can trigger the decomposition of the CeO2 shell. With the single-particle enumeration (SPE) strategy coupled with dark field optical microscopy (DFM), an obvious color alteration of single Au@CeO2 NPs during the etching process can be observed in real-time. By statistically calculating the number of the etched nanoparticles, the β-glu activity level can be quantified accurately. This assay displays a broad linear range from 0.5 to 50 mU⋅mL−1 and low detection limit of 0.12 mU⋅mL−1. In addition, this method was successfully used to determine β-glu in real samples and acquires satisfactory recoveries in the range of 97.1-102.0%. This study provides a visualization analysis method for β-glu, which may be helpful for monitoring other targets in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang F, Li Y, Han Y, Ye Z, Wei L, Luo H, Xiao L (2019) Single-particle enzyme activity assay with spectral-resolved dark-field optical microscopy. Anal Chem 91:6329–6339

    Article  CAS  Google Scholar 

  2. Wu Y, Li Z, Shi M, Yuan K, Meng H, Qu L, Li Z (2021) Programmable DNAzyme computing for specific in vivo imaging: intracellular stimulus-unlocked target sensing and signal amplification. Anal Chem 93:12456–12463

    Article  CAS  Google Scholar 

  3. Lian Y, Yuan X, Wang Y, Wei L (2022) Highly sensitive visual colorimetric sensor for xanthine oxidase detection by using MnO2-nanosheet-modified gold nanoparticles. Spectrochim Acta A 276:121219

    Article  CAS  Google Scholar 

  4. Ge J, Hu Y, Deng R, Li Z, Zhang K, Shi M, Yang D, Cai R, Tan W (2020) Highly sensitive microRNA detection by coupling nicking-enhanced rolling circle amplification with MoS2 quantum dots. Anal Chem 92:13588–13594

    Article  CAS  Google Scholar 

  5. Ge J, Xing K, Geng X, Hu Y, Shen X, Zhang L, Li Z (2018) Human serum albumin templated MnO2 nanosheets are oxidase mimics for colorimetric determination of hydrogen peroxide and for enzymatic determination of glucose. Microchim Acta 185:559

    Article  Google Scholar 

  6. Sinha S, Datta M, Datta S (2021) A glucose tolerant β-glucosidase from Thermomicrobium roseum that can hydrolyze biomass in seawater. Green Chem 23:7299–7311

    Article  CAS  Google Scholar 

  7. Bi Y, Zhu C, Wang Z, Luo H, Fu R, Zhao X, Zhao X, Jiang L (2019) Purification and characterization of a glucose-tolerant β-glucosidase from black plum seed and its structural changes in ionic liquids. Food Chem 274:422–428

    Article  CAS  Google Scholar 

  8. Han X, Qing X, Yang S, Li R, Zhan J, You Y, Huang W (2021) Study on the diversity of non-Saccharomyces yeasts in Chinese wine regions and their potential in improving wine aroma by β-glucosidase activity analyses. Food Chem 360:129886

    Article  CAS  Google Scholar 

  9. Zhou X, Huang Z, Yang H, Jiang Y, Wei W, Li Q, Mo Q, Liu J (2017) β-Glucosidase inhibition sensitizes breast cancer to chemotherapy. Biomed Pharmacother 91:504–509

    Article  CAS  Google Scholar 

  10. Zhang W, Oehrle M, Prada C, Schwartz I, Chutipongtanate S, Wattanasirichaigoon D, Inskeep V, Dai M, Pan D, Sun Y, Setchell K (2017) A convenient approach to facilitate monitoring Gaucher disease progression and therapeutic response. Analyst 142:3380–3387

    Article  CAS  Google Scholar 

  11. Jin M, Zhang T, Yang Y, Ding Y, Li J, Zhong G (2020) A simplified and miniaturized glucometer-based assay for the detection of β-glucosidase activity. J Zhejiang Univ Sci B 20:264–272

    Article  Google Scholar 

  12. Serdiuk I, Reszka M, Myszka H, Krzymiński K, Liberek B, Roshal A (2016) Flavonol-based fluorescent indicator for determination of β-glucosidase activity. RSC Adv 6:42532–42536

    Article  CAS  Google Scholar 

  13. Han J, Fang S, He X, Wang L, Li C, Wu J, Cai Y, Wang Y (2022) Combination of aqueous two-phase flotation and inverse transition cycling: strategies for separation and purification of recombinant β-glucosidase from cell lysis solution. Food Chem 373:131543

    Article  CAS  Google Scholar 

  14. Zhang H, Lu M, Jiang H, Wu Z, Zhou D, Li D, Yang F (2020) Tyrosinase-mediated dopamine polymerization modified magnetic alginate beads for dual-enzymes encapsulation: preparation, performance and application. Colloid Surface B 188:110800

    Article  CAS  Google Scholar 

  15. Han Y, Chen T, Li Y, Chen L, Wei L, Xiao L (2019) Single-particle enumeration-based sensitive glutathione S-transferase assay with fluorescent conjugated polymer nanoparticle. Anal Chem 91:11146–11153

    Article  CAS  Google Scholar 

  16. Ma J, Zhan L, Li R, Gao P, Huang C (2017) Color-encoded assays for the simultaneous quantification of dual cancer biomarkers. Anal Chem 89:8484–8489

    Article  CAS  Google Scholar 

  17. Han Y, Ye Z, Wang F, Chen T, Wei L, Chen L, Xiao L (2019) Single-particle enumeration-based ultrasensitive enzyme activity quantification with fluorescent polymer nanoparticles. Nanoscale 11:14793–14801

    Article  CAS  Google Scholar 

  18. Liu Y, Huang C (2013) Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys. ACS Nano 7:11026–11034

    Article  CAS  Google Scholar 

  19. Li T, Wu X, Liu F, Li N (2017) Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging. Analyst 142:248–256

    Article  CAS  Google Scholar 

  20. Wang F, Han Y, Wang S, Ye Z, Wei L, Xiao L (2019) Single-particle LRET aptasensor for the sensitive detection of Aflatoxin B1 with upconversion nanoparticles. Anal Chem 91:11856–11863

    Article  CAS  Google Scholar 

  21. Gao P, Lei G, Huang C (2021) Dark-field microscopy: recent advances in accurate analysis and emerging applications. Anal Chem 93:4707–4726

    Article  CAS  Google Scholar 

  22. Chen Y, Lian Y, Huang M, Wei L, Xiao L (2019) A dual-mode fluorometric/colorimetric sensor for Cu2+ detection based on hybridized carbon dots and gold-silver core-shell nanoparticles. Analyst 144:4250–4257

    Article  CAS  Google Scholar 

  23. Huang M, Fan Y, Yuan X, Wei L (2022) Color-coded detection of malathion based on enzyme inhibition with dark-field optical microscopy. Sens Actuators, B Chem 353:131135

    Article  CAS  Google Scholar 

  24. Huang M, Fan Y, Liu H, Ma Y, Wei L (2021) Single-particle cadmium (II) and chromium(III) ions assay using GNP@Ag core-shell nanoparticles with dark-field optical microscopy. Sens Actuators, B Chem 346:130471

    Article  CAS  Google Scholar 

  25. Ye Z, Wei L, Xiao L, Wang J (2019) Laser illumination-induced dramatic catalytic activity change on Au nanospheres. Chem Sci 10:5793–5800

    Article  CAS  Google Scholar 

  26. Li T, Wu X, Tao G, Yin H, Zhang J, Liu F, Li N (2018) A simple and non-amplification platform for femtomolar DNA and microRNA detection by combining automatic gold nanoparticle enumeration with target-induced strand-displacement. Biosens Bioelectron 105:137–142

    Article  Google Scholar 

  27. Chen Z, Wang Y, Mo Y, Long X, Zhao H, Su L, Duan Z, Xiong Y (2020) ZIF-8 directed templating synthesis of CeO2 nanoparticles and its oxidase-like activity for colorimetric detection. Sens Actuators, B Chem 323:128625

    Article  CAS  Google Scholar 

  28. Qi F, Han Y, Liu H, Meng H, Li Z, Xiao L (2020) Localized surface plasmon resonance coupled single-particle galactose assay with dark-field optical microscopy. Sens Actuators, B Chem 320:128347

    Article  CAS  Google Scholar 

  29. Piella J, Gónzalez-Febles A, Patarroyo J, Arbiol J, Bastús N, Puntes V (2019) Seeded-growth aqueous synthesis of colloidal-stable citrate-stabilized Au/CeO2 hybrid nanocrystals: heterodimers, core@shell, and clover- and star-like structures. Chem Mater 31:7922–7932

    Article  CAS  Google Scholar 

  30. Wang H, Yang W, Wang X, Huang L, Zhang Y, Yao S (2020) A CeO2@MnO2 core-shell hollow heterojunction as glucose oxidase-like photoenzyme for photoelectrochemical sensing of glucose. Sens Actuators, B Chem 304:127389

    Article  CAS  Google Scholar 

  31. Chen G, Zhang H, Yang F (2021) A simple and portable method for β-glucosidase activity assay and its inhibitor screening based on a personal glucose meter. Anal Chim Acta 1142:19–27

    Article  CAS  Google Scholar 

  32. Lai C, Zeng G, Huang D, Zhao M, Chen M, Wei Z, Huang C, Xu P, Li N, Li X, Zhang C (2014) Colorimetric screening of β-glucosidase inhibition based on gold nanocomposites. Anal Methods 6:312–315

    Article  CAS  Google Scholar 

  33. Wang L, Ma J, Cheng X, Li Z, Sun L, Zeng Z, Jiang H (2018) Determination of β-glucosidase activity based on enzyme-triggered click chemistry. Chin J Org Chem 38:2775–2779

    Article  CAS  Google Scholar 

  34. Liu J, Bao H, Liu C, Wu F, Gao F (2019) “Turn-on” fluorescence determination of β-glucosidase activity using fluorescent polymer nanoparticles formed from polyethylenimine cross-linked with hydroquinone. ACS Appl Polym Mater 1:3057–3063

    Article  CAS  Google Scholar 

  35. Liu Z, Tian Y, Han Y, Bai E, Li Y, Xu Z, Liu S (2019) A “turn off-on” fluorescent nanoprobe consisting of CuInS2 quantum dots for determination of the activity of β-glucosidase and for inhibitor screening. Microchim Acta 186:806

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Foundation of Hunan Provincial Education Department (20A299), Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University (2022A04), and Natural Science Foundation of Hunan Province (2022JJ40266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 139 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Zhang, H., Cao, H. et al. Determination of β-glucosidase activity using single-particle enumeration with Au@CeO2 nanoparticles. Microchim Acta 189, 480 (2022). https://doi.org/10.1007/s00604-022-05580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05580-3

Keywords

Navigation