Skip to main content
Log in

Single Particle Colorimetric Acid Phosphatase Activity Assay with CeO2-modified Gold Nanoparticles

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Acid phosphatase (ACP) is a ubiquitous phosphatase in living organisms. The abnormal variation of ACP is related to various diseases. Herein, we propose a colorimetric method based on CeO2-modified gold core shell nanoparticles (Au@CeO2 NPs) to analyze ACP activity with high sensitivity and specificity. In this design, 2-phospho-L-ascorbic acid trisodium salt (AAP) is dephosphorylated by ACP and produces reductive ascorbic acid (AA), which makes the CeO2 shell decomposition. A remarkable blue shift of localized surface plasmon resonance peak (LSPR, from yellow to green) along with the scattering intensity ratio changes from individual Au@CeO2 NPs are observed. ACP activity can be quantified by calculating the ratio changes of individual Au@CeO2 NPs. This assay reveals limit of detection (LOD) of 0.044 mU/mL and the linear range of 0.05–5.0 mU/mL, which are much lower than most of spectroscopic measurements in bulk solution. Furthermore, the recovery measurements in real samples are satisfactory and the capacity for practical application is demonstrated. As a consequence, Au@CeO2 NPs used in this assay will find new applications for the ultrasensitive detection of enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qin Y., Yang Y. H., He R., Zhou L. C., Zhang L., Chem. Res. Chinese Universities, 2022, 38(6), 1497

    Article  CAS  Google Scholar 

  2. Zhang G. Q., Johnston T., Quin M. B., Schmidt-Dannert C., ACS Synth. Biol., 2019, 8, 1876

    Google Scholar 

  3. Suea-Ngam A., Bezinge L., Mateescu B., Howes P. D., deMello J. A., Richards D. A., ACS Sens., 2020, 5, 2701

    Article  CAS  PubMed  Google Scholar 

  4. Schlichtmann B. W., Kondru N., Hepker M. M., Kanthasamy A. G., Anantharam V., John M., Ban B., Mallapragada S. K., Narasimhan B., ACS Chem. Neurosci., 2020, 11, 4179

    Article  CAS  PubMed  Google Scholar 

  5. Li Q. N., Qiang W. Z., Yuan J., Xiao L. H., Anal. Chem., 2023, 95, 7796

    Article  CAS  PubMed  Google Scholar 

  6. Guo Y. Y., Li X. Q., Dong Y. M., Wang G. L., ACS Sustainable Chem. Eng., 2019, 7, 7572

    Article  CAS  Google Scholar 

  7. Han Y. X., Quan K. J., Chen J., Qiu H. D., Biosens. Bioelectron., 2020, 170, 112671

    Article  CAS  PubMed  Google Scholar 

  8. Zhang G. Q., Chen Q. J., Sun J., Wang H. X., Han C. H., J. Basic Microbiol., 2013, 53, 868

    Article  CAS  PubMed  Google Scholar 

  9. Yan X., Xia C., Chen B., Li Y. F., Gao P. F., Huang C. Z., Anal. Chem., 2020, 92, 2130

    Article  CAS  PubMed  Google Scholar 

  10. Wang J., Lu Q. Y., Weng C. Y., Li X. Y., Yan X. Q., Yang W., Li B. Z., Zhou X. M., ACS Biomater. Sci. Eng., 2020, 6, 3132

    Article  CAS  PubMed  Google Scholar 

  11. Hassan S. S. M., Sayour H. E. M., Kamel A. H., Anal. Chim. Acta, 2009, 640, 75

    Article  CAS  PubMed  Google Scholar 

  12. Ahmed S. R., Chen A. C., ACS Appl. Nano Mater., 2020, 3, 9462

    Article  CAS  Google Scholar 

  13. Yuan X., Zhang H. L., Yuan X., Mao G. J. Wei L., Microchem. J., 2023, 184, 108133

    Article  CAS  Google Scholar 

  14. Liu J. X., Wang Y. F., Ma W. Y., Zong S. Y., Li J. Y., Chem. Res. Chinese Universities, 2022, 38(6), 1446

    Article  CAS  Google Scholar 

  15. Wang F. Y., Li Y. L., Han Y. M., Ye Z. J., Wei L., Luo H. B., Xiao L. H., Anal. Chem., 2019, 91, 6329

    Article  CAS  PubMed  Google Scholar 

  16. Su C., Bai L. L., Zhang H. B., Chang K. S., Li G. B., Li S. L., Chem. Res. Chinese Universities, 2019, 35(1), 163

    Article  CAS  Google Scholar 

  17. Ye Z. J., Weng R., Ma Y. H., Wang F. Y., Liu H., Wei L., Xiao L. H., Anal. Chem., 2018, 90, 13044

    Article  CAS  PubMed  Google Scholar 

  18. Sztandera K., Gorzkiewicz M., Klajnert-Maculewicz B., Mol. Phamaceutics, 2019, 16, 1

    Article  CAS  Google Scholar 

  19. Zhang Y. Q., Luo Q., Ding K., Liu S. G., Shi X. B., Sens. Actuat. B: Chem., 2021, 335, 129708

    Article  CAS  Google Scholar 

  20. Huang M. N., Fan Y. P., Yuan X., Wei L., Sens. Actuat. B: Chem., 2022, 353, 131135

    Article  CAS  Google Scholar 

  21. Ouyang Y. Z., Chen Y. C., Shang J. H., Sun S. J., Wang X. B., Huan S. Y., Xiong B., Zhang X. B., Anal. Chem., 2023, 95, 5009

    Article  CAS  PubMed  Google Scholar 

  22. Tan L. L., Wen Z. H., Geng Z. Y., Jin Y. R., Wu H., Wang P. P., Chem. Res. Chinese Universities, 2023, 39(4), 642

    Article  CAS  Google Scholar 

  23. Ye Z. J., Wang X., Xiao L. H., Anal. Chem., 2019, 91, 15327

    Article  CAS  PubMed  Google Scholar 

  24. Ye Z. J., Wei L., Xiao L. H., Chem. Sci., 2019, 10, 5793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z. Q., Wang H. B., Li Y. X., Xie M. G., Li C. G., Lu H. Y., Peng Y., Shi Z., Chem. Res. Chinese Universities, 2022, 38(3), 750

    Article  Google Scholar 

  26. Yuan X., Zhang H. L., Cao H. J., Mao G. J., Wei L., Microchim. Acta, 2022, 189, 480

    Article  CAS  Google Scholar 

  27. Yuan X., Cao H. J., Zhang H. L., Mao G. J., Wei L., Spectrochim. Acta A, 2023, 299, 122888

    Article  CAS  Google Scholar 

  28. Creyer M. N., Jin Z. C., Retout M., Yim W. J., Zhou J. J., Jokerst J. V., Langmuir, 2022, 38, 14200

    Article  CAS  PubMed  Google Scholar 

  29. Cibake-Ndaya C., Javahiraly N., Roiban L., Epicier T., Boubiche N., Valette S., Saury A., Brioude A., ACS Appl. Nano Mater., 2023, 6, 899

    Article  Google Scholar 

  30. Li L. L., Xu J. H., Liang X., Wu X. T., Wang X., Song S. Y., Zhang H. J., Chem. Res. Chinese Universities, 2023, 39(6), 921

    Article  Google Scholar 

  31. Jin H., Xu D., Tian C., Yue Y. H., Hua W. M., Gao Z., Chem. Res. Chinese Universities, 2022, 38(6), 1547

    Article  CAS  Google Scholar 

  32. Jiang F., Wang S. S., Liu B., Liu J., Wang L., Xiao Y., Xu Y. B., Liu X. H., ACS Catal., 2020, 10, 11493

    Article  CAS  Google Scholar 

  33. Qi F., Han Y. M., Ye Z. J., Liu H., Wei L., Xiao L. H., Anal. Chem., 2018, 90, 11146

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y. Y., Wang Z. Z., Hao X. L., Li F. L., Zheng Y. J., Zhang J. Z., Lin X. H., Weng S. H., Sens. Actuat. B: Chem., 2019, 297, 126784

    Article  CAS  Google Scholar 

  35. Li R., Sun Y. N., Jin L. H., Qiao X. H., Li C., Shen Y. H., Anal. Methods, 2021, 13, 809

    Article  CAS  PubMed  Google Scholar 

  36. Wang F. Y., Han Y. M., Wang S. M., Ye Z. J., Wei L., Xiao L. H., Anal. Chem., 2019, 91, 11856

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province, China (No. 2022JJ40266) and the Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University, China (No. 2022A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wei.

Ethics declarations

XIAO Lehui is a youth executive editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T.J., Yuan, X., Mao, G. et al. Single Particle Colorimetric Acid Phosphatase Activity Assay with CeO2-modified Gold Nanoparticles. Chem. Res. Chin. Univ. 40, 320–325 (2024). https://doi.org/10.1007/s40242-024-4024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-024-4024-6

Keywords

Navigation