Skip to main content

Advertisement

Log in

Sandwich-type electrochemical immunosensor based on nitrogen-doped porous carbon and nanoporous trimetallic nanozyme (PdAgCu) for determination of prostate specific antigen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich-type electrochemical immunosensor was designed for the ultrasensitive detection of prostate-specific antigen (PSA), using Au nanoparticles (Au NPs) modified nitrogen-doped porous carbon (NPC) as sensor platform and trimetallic PdAgCu mesoporous nanospheres (PdAgCu MNSs) as enzyme-mimicking labels. NPC was prepared by a facile one-step pyrolysis strategy of biomimetic phylloid zeolite imidazole framework (ZIF-L) nanosheets. Through this strategy, the graphitization of the microcrystalline structure enhanced the electrical conductivity, while its enlarged specific surface area and abundant pore volume can enrich H2O2 to improve the catalytic efficiency. Moreover, Au NPs were used to modify NPC without cross-linking agents to further optimize electron transport while capturing primary antibodies, improving stability and sensitivity of the immunosensor. PdAgCu MNSs with uniform size, cylindrical open mesoporous channels, and continuous crystal frame structure were self-assembling synthesized by electrostatic adsorption and ascorbic acid (AA) co-reduction with amphiphilic dioctadecyldimethylammonium chloride (DODAC) as surfactant-cum-micelle, whose unique structure maximizes the use of polyatoms to expose catalytic sites, exhibiting good biocompatibility and electrocatalytic ability. Under the optimal conditions, the immunosensor showed superior sensitivity, a wide dynamic detection range (10 fg mL−1 ~ 100 ng mL−1) and a low limit of detection (LOD, 3.29 fg mL−1). This work provides a convenient strategy for the clinical detection of PSA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wong MC, Goggins WB, Wang HH, Fung FD, Leung C, Wong SY, Ng CF, Sung JJ (2016) Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur Urol 70(5):862–874

    Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  3. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A (2020) Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol 77(1):38–52

    Article  Google Scholar 

  4. Zhang B, Wang H, Xi J, Zhao F, Zeng B (2019) A novel Z-scheme ZnIn2S4/WO3 photocatalyst based photoelectrochemical immunosensor for the sensitive detection of prostate specific antigen. Sens Actuators, B Chem 298:126835

    Article  CAS  Google Scholar 

  5. Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, Wang J, Chen X, Dong H, Siu K, Winkler JD, Crew AP, Crews CM, Coleman KG (2016) PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci 113(26):7124–7129

    Article  CAS  Google Scholar 

  6. Tang C, Wang P, Zhou K, Ren J, Wang S, Tang F, Li Y, Liu Q, Xue L (2022) Electrochemical immunosensor based on hollow porous Pt skin AgPt alloy/NGR as a dual signal amplification strategy for sensitive detection of neuron-specific enolase. Biosens Bioelectron 197:113779

    Article  CAS  Google Scholar 

  7. Morris S, Cottrell M, Rawlings SA, Peterson S, Karris M, Pacheco D, Chaillon A, Kay A, Chow K, Anderson PL, Gianella S, Blumenthal J (2022) Genital inflammation is not associated with decreased vaginal tenofovir concentrations in women taking oral PrEP. JAIDS Journal of Acquired Immune Deficiency Syndromes 89(4):390–395

    Article  CAS  Google Scholar 

  8. Yang Q, Wang P, Ma E, Yu H, Zhou K, Tang C, Ren J, Li Y, Liu Q, Dong Y (2021) A sandwich-type electrochemical immunosensor based on Au@Pd nanodendrite functionalized MoO2 nanosheet for highly sensitive detection of HBsAg. Bioelectrochemistry 138:107713

    Article  CAS  Google Scholar 

  9. Feng S, Yan M, Xue Y, Huang J, Yang X (2021) Electrochemical immunosensor for cardiac troponin I detection based on covalent organic framework and enzyme-catalyzed signal amplification. Anal Chem 93(40):13572–13579

    Article  CAS  Google Scholar 

  10. Yildiz G, Bolton-Warberg M, Awaja F (2021) Graphene and graphene oxide for bio-sensing: general properties and the effects of graphene ripples. Acta Biomater 131:62–79

    Article  CAS  Google Scholar 

  11. Hu S, Munoz F, Noborikawa J, Haan J, Scudiero L, Ha S (2016) Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation. Appl Catal B 180:758–765

    Article  CAS  Google Scholar 

  12. Öndeş B, Evli S, Uygun M, AktaşUygun D (2021) Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosensors and Bioelectronics 191:113454

    Article  Google Scholar 

  13. Biswas S, Lan Q, Xie Y, Sun X, Wang Y (2021) Label-free electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 125 based on antibody-immobilized biocompatible MOF-808/CNT. ACS Appl Mater Interfaces 13(2):3295–3302

    Article  CAS  Google Scholar 

  14. Tang D, Yang X, Wang B, Ding Y, Xu S, Liu J, Peng Y, Yu X, Su Z, Qin X (2021) One-step electrochemical growth of 2D/3D Zn(II)-MOF hybrid nanocomposites on an electrode and utilization of a PtNPs@2D MOF nanocatalyst for electrochemical immunoassay. ACS Appl Mater Interfaces 13(39):46225–46232

    Article  CAS  Google Scholar 

  15. Hu Y, Dai L, Liu D, Du W, Wang Y (2018) Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renew Sustain Energy Rev 91:793–801

    Article  CAS  Google Scholar 

  16. Gu Y, Wu Y-N, Li L, Chen W, Li F, Kitagawa S (2017) Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew Chem Int Ed 56(49):15658–15662

    Article  CAS  Google Scholar 

  17. Palakollu VN, Chen D, Tang J-N, Wang L, Liu C (2022) Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Microchim Acta 189(4):161

    Article  CAS  Google Scholar 

  18. Wang C, Kim J, Tang J, Kim M, Lim H, Malgras V, You J, Xu Q, Li J, Yamauchi Y (2020) New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6(1):19–40

    Article  CAS  Google Scholar 

  19. Li W, Chen Z, Yu H, Li J, Liu S (2021) Light-emitting materials: wood-derived carbon materials and light-emitting materials. Adv Mater 33(28):2170212

    Article  CAS  Google Scholar 

  20. Chen Q, Yuan C, He Z, Wang J, Zhai C, Bin D, Zhu M (2022) A label-free photoelectrochemical sensor of S, N co-doped graphene quantum dot (S, N-GQD)-modified electrode for ultrasensitive detection of bisphenol A. Microchim Acta 189(5):208

    Article  CAS  Google Scholar 

  21. Gulbalkan HC, Haslak ZP, Altintas C, Uzun A, Keskin S (2022) Assessing CH4/N2 separation potential of MOFs, COFs, IL/MOF, MOF/polymer, and COF/polymer composites. Chem Eng J 428:131239

    Article  CAS  Google Scholar 

  22. Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133(31):11854–11857

    Article  CAS  Google Scholar 

  23. Zheng H, Yang S-J, Zheng Y-C, Cui Y, Zhang Z, Zhong J-Y, Zhou J (2020) Electrostatic effect of functional surfaces on the activity of adsorbed enzymes: simulations and experiments. ACS Appl Mater Interfaces 12(31):35676–35687

    Article  CAS  Google Scholar 

  24. Ma E, Wang P, Yang Q, Yu H, Pei F, Zheng Y, Liu Q, Dong Y, Li Y (2020) Electrochemical immunosensors for sensitive detection of neuron-specific enolase based on small-size trimetallic Au@Pd^Pt nanocubes functionalized on ultrathin MnO2 nanosheets as Signal Labels. ACS Biomater Sci Eng 6(3):1418–1427

    Article  CAS  Google Scholar 

  25. Iglesias-Mayor A, Amor-Gutierrez O, Novelli A, Fernandez-Sanchez MT, Costa-Garcia A, de la Escosura-Muniz A (2020) Bifunctional Au@Pt/Au core@shell nanoparticles as novel electrocatalytic tags in immunosensing: application for Alzheimer’s disease biomarker detection. Anal Chem 92(10):7209–7217

    Article  CAS  Google Scholar 

  26. Dong H, Cao L, Zhao H, Liu S, Liu Q, Wang P, Xu Z, Wang S, Li Y, Zhao P, Li Y (2020) “Gold-plated″ IRMOF-3 and sea cucumber-like Pd@PtRh SNRs based sandwich-type immunosensor for dual-mode detection of PCT. Biosens Bioelectron 170:112667

    Article  CAS  Google Scholar 

  27. Gawande MB, Ariga K, Yamauchi Y (2021) Single-atom catalysts. Small 17(16):2101584

    Article  CAS  Google Scholar 

  28. Jeong H, Shin S, Lee H (2020) Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts. ACS Nano 14(11):14355–14374

    Article  Google Scholar 

  29. Gong Y, Liu X, Gong Y, Wu D, Xu B, Bi L, Zhang LY, Zhao XS (2018) Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation. J Colloid Interface Sci 530:189–195

    Article  CAS  Google Scholar 

  30. Liu D-X, Zhou Y-T, Zhu Y-F, Chen Z-Y, Yan J-M, Jiang Q (2022) Tri-metallic AuPdIr nanoalloy towards efficient hydrogen generation from formic acid. Appl Catal B 309:121228

    Article  CAS  Google Scholar 

  31. Yu X, Li X, Zhang S, Jia Y, Xu Z, Li X, Chen Z, Li Y (2021) Ultrasensitive electrochemical detection of neuron-specific enolase based on spiny core-shell Au/CuxO@CeO2 nanocubes. Bioelectrochemistry 138:107693

    Article  CAS  Google Scholar 

  32. Dong H, Liu S, Liu Q, Li Y, Li Y, Zhao Z (2022) A dual-signal output electrochemical immunosensor based on Au-MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection. Biosens Bioelectron 195:113648

    Article  CAS  Google Scholar 

  33. Fang Q, Lin Z, Lu F, Chen Y, Huang X, Gao W (2019) A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator. Electrochim Acta 302:207–215

    Article  CAS  Google Scholar 

  34. Wang P, Pei F, Ma E, Yang Q, Yu H, Liu J, Li Y, Liu Q, Dong Y, Zhu H (2020) The preparation of hollow AgPt@Pt core-shell nanoparticles loaded on polypyrrole nanosheet modified electrode and its application in immunosensor. Bioelectrochemistry 131:107352

    Article  CAS  Google Scholar 

  35. Sun X, Li C, Zhu Q, Chen J, Li J, Ding H, Sang F, Kong L, Chen Z, Wei Q (2020) A novel ultrasensitive sandwich-type photoelectrochemical immunoassay for PSA detection based on dual inhibition effect of Au/MWCNTs nanohybrids on N-GQDs/CdS QDs dual sensitized urchin-like TiO2. Electrochim Acta 333:135480

    Article  CAS  Google Scholar 

  36. Zhang M, Hu X, Mei L, Zhang L, Wang X, Liao X, Qiao X, Hong C (2021) PSA detection electrochemical immunosensor based on MOF-235 nanomaterial adsorption aggregation signal amplification strategy. Microchem J 171:106870

    Article  CAS  Google Scholar 

  37. Li B, Guo L, Chen M, Guo Y, Ge L, Kwok HF (2022) Single-atom Pt-anchored Zn0.5Cd0.5S boosted photoelectrochemical immunoassay of prostate-specific antigen. Biosensors and Bioelectronics 202:114006

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Shandong Provincial (ZR2021MB048, ZR2021QB050) and the National Key Scientific Instrument and Equipment Development Project of China (No. 21627809).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueyun Li or Feng Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1477 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Q., Dong, H., Liu, S. et al. Sandwich-type electrochemical immunosensor based on nitrogen-doped porous carbon and nanoporous trimetallic nanozyme (PdAgCu) for determination of prostate specific antigen. Microchim Acta 189, 359 (2022). https://doi.org/10.1007/s00604-022-05458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05458-4

Keywords

Navigation