Skip to main content
Log in

Preparation of a pH-responsive controlled-release electrochemical immunosensor based on polydopamine encapsulation for ultrasensitive detection of alpha-fetoprotein

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

To accomplish ultra-sensitive detection of alpha-fetoprotein(AFP), a novel electrochemical immunosensor using polydopamine-coated Fe3O4 nanoparticles (PDA@Fe3O4 NPs) as a smart label and polyaniline (PANI) and Au NPs as substrate materials has been created. The sensor has the following advantages over typical immunoassay technology: (1) The pH reaction causes PDA@Fe3O4 NPs to release Prussian blue (PB) prosoma while also destroying the secondary antibody label and immunological platform and lowering electrode impedance; (2) PB has a highly efficient catalytic effect on H2O2, allowing for the obvious amplification of electrical impulses; (3) PANI was electrodeposited on the electrode surface to avoid PB loss and signal leakage, which effectively absorbed and fixed PB while considerably increasing electron transmission efficiency. The sensor’s detection limit was 0.254 pg·mL−1 (S/N = 3), with a detection range of 1 pg·mL−1 to 100 ng·mL−1. The sensor has a high level of selectivity, repeatability, and stability, and it is predicted to be utilized to detect AFP in real-world samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel R et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  2. Jian W, Wang C, Chen Z, Yu Y, Sun D, Han L, Shi LJN (2016) Nonenzymatic electrochemical immunosensor using ferroferric oxide–manganese dioxide–reduced graphene oxide nanocomposite as label for α-fetoprotein detection. Nano 11(10):86–97

    Article  Google Scholar 

  3. Xiang H, Wang Y, Wang M, Shao Y, Jiao Y, Zhu YJN (2018) A redox cycling-amplified electrochemical immunosensor for α-fetoprotein sensitive detection via polydopamine nanolabels. Nanoscale 10(28):13572–13580

    Article  CAS  Google Scholar 

  4. Sun J, Tian D, Guo Q, Li Z, Yang MJAM (2016) A label-free electrochemical immunosensor for the detection of cancer biomarker α-fetoprotein (AFP) based on hydroxyapatite induced redox current. Anal Methods 8(40):7319–7323

    Article  CAS  Google Scholar 

  5. Song D, Zheng J, Myung NV, Xu J, Zhang MJT (2020) Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO2 nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta 225:122006

    Article  Google Scholar 

  6. Zhu Q, Chai Y, Zhuo Y, Yuan RJB (2015) Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotin-streptavidin signal amplification strategy. Biosens Bioelectron 68:42–48

    Article  CAS  Google Scholar 

  7. Han J, Zhuo Y, Chai Y, Yuan R, Zhang W, Zhu QJACA (2012) Simultaneous electrochemical detection of multiple tumor markers based on dual catalysis amplification of multi-functionalized onion-like mesoporous graphene sheets. Anal Chim Acta 746(none):70–76

    Article  CAS  Google Scholar 

  8. Yu Z, Gong H, Li Y, Xu J, Zhang J, Zeng Y, Liu X, Tang D (2021) Chemiluminescence-derived self-powered photoelectrochemical immunoassay for detecting a low-abundance disease-related protein. Anal Chem 93(39):13389–13397

    Article  CAS  Google Scholar 

  9. Pakchin PS, Fathi M, Ghanbari H, Saber R, Omidi YJB (2020) A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron 153:112029

    Article  Google Scholar 

  10. Wang Y, Zhao G, Wang H, Cao W, Du B, Wei QJB (2018) Sandwich-type electrochemical immunoassay based on Co3O4@MnO2-thionine and pseudo-ELISA method toward sensitive detection of alpha fetoprotein. Biosens Bioelectron 106:179–185

    Article  CAS  Google Scholar 

  11. Zhao L, Li S, He J, Tian G, Wei Q, Li HJB (2013) enzyme-free electrochemical immunosensor configured with Au–Pd nanocrystals and N-doped graphene sheets for sensitive detection of AFP. Biosens Bioelectron 49(Complete):222–225

    Article  CAS  Google Scholar 

  12. Li Y, Yuan R, Chai Y, Zhuo Y, Su H, Zhang YJMA (2014) Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein. Microchim Acta 181(5–6):679–685

    Article  CAS  Google Scholar 

  13. Chikhaliwala P, Rai R, Chandra SJMA (2019) Simultaneous voltammetric immunodetection of alpha-fetoprotein and glypican-3 using a glassy carbon electrode modified with magnetite-conjugated dendrimers. Microchim Acta 186(4):255

    Article  Google Scholar 

  14. Levy A, Nigro G, Sansonetti PJ (1868) E Deutsch (2017) Candidate immune biomarkers for radioimmunotherapy. Biochim Biophys Acta Rev Cancer 1:58–68

    Google Scholar 

  15. Tsutsumi E, Henares TG, Funano SI, Kawamura K, Endo T, Hisamoto H (2012) Single-step sandwich immunoreaction in a square glass capillary immobilizing capture and enzyme-linked antibodies for simplified enzyme-linked immunosorbent assay. Anal Sci 28(1):51–56

    Article  CAS  Google Scholar 

  16. Kim HR, Bong JH, Park JH, Song Z, JCJAAM (2021) Pyun, Interfaces, cesium lead bromide (CsPbBr3) perovskite quantum dot-based photosensor for chemiluminescence immunoassays. ACS Appl Mater Interfaces 13(25):29392–29405

  17. Peng X, Wang Y, Wen W, Chen MM, Wang SJAC (2021) Simple MoS2–nanofiber paper-based fluorescence immunosensor for point-of-care detection of programmed cell death protein 1. Analy Chem 93(25):8791–8798

  18. Song Y, Li W, Ma C, Sun Y, Hong CJS (2020) First use of inorganic copper silicate-transduced enzyme-free electrochemical immunosensor for carcinoembryonic antigen detection. Sens Actuat B: Chem 319:128311

    Article  CAS  Google Scholar 

  19. Cotchim S, Thavarungkul P, Kanatharana P, Limbut WJACA (2020) Multiplexed label-free electrochemical immunosensor for breast cancer precision medicine. Anal Chim Acta 1130:60–71

    Article  CAS  Google Scholar 

  20. Du Dan ZZ, Shin Yongsoon, Wang Jun, Hong Wu, Engelhard Mark H, Liu Jun, Aksay Ilhan A, Lin Y (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82(7):2989–2995

    Article  Google Scholar 

  21. Wu Y, Su H, Yang J, Wang Z, SJJoC Yin, (2020) Photoelectrochemical immunosensor for sensitive detection of alpha-fetoprotein based on a graphene honeycomb film. J Colloid Interface Sci 580:583–591

    Article  CAS  Google Scholar 

  22. Gamella M, Bueno-Díaz C, Montiel RV, Povedano E, Reviejo AJ, Villalba M, Campuzano S, Pingarrón JM (2020) First electrochemical immunosensor for the rapid detection of mustard seeds in plant food extracts. Talanta 219:121247

    Article  CAS  Google Scholar 

  23. Li W, Yang Y, Ma C, Song Y, Hong CJT (2020) A sandwich-type electrochemical immunosensor for ultrasensitive detection of multiple tumor markers using an electrical signal difference strategy. Talanta 219:121322

    Article  CAS  Google Scholar 

  24. Putnin T, Ngamaroonchote A, Wiriyakun N, Ounnunkad K, Laocharoensuk RJMA (2019) Dually functional polyethylenimine-coated gold nanoparticles: a versatile material for electrode modification and highly sensitive simultaneous determination of four tumor markers. Microchim Acta 186(5):305

    Article  Google Scholar 

  25. Li W, Ma C, Song Y, Hong C, Yin BJN (2020) Sensitive detection of carcinoembryonic antigen (CEA) by a sandwich-type electrochemical immunosensor using MoF-Ce@HA/Ag-HRP-Ab2 as a nanoprobe. Nanotechnology 31(18):185605

  26. Li Y, Liu L, Liu X, Ren R, Wei QJB (2020) A dual-mode PCT electrochemical immunosensor with CuCo2S4 bimetallic sulfides as enhancer. Biosens Bioelectron 163:112280

    Article  CAS  Google Scholar 

  27. Yang Q, Wang P, Zhou K, Tang C, Dong Y (2020) A sandwich-type electrochemical immunosensor based on Pd nanocubes functionalized MoO2 nanospheres for highly sensitive detection of CEA. J Electrochem Soc 167(16):167526

  28. Ma E, Wang P, Yang Q, Yu H, Dong YJB (2019) Electrochemical immunosensor based on MoS2 NFs/Au@AgPt YNCs as signal amplification label for sensitive detection of CEA. Biosens Bioelectron 142:111580

    Article  CAS  Google Scholar 

  29. Wei Y, Li X, Sun X, Ma H, Zhang Y, Wei QJB (2017) Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on Au-CoS/graphene and CeO2 /ionic liquids doped with carboxymethyl chitosan complex. Biosens Bioelectron 94:141

    Article  CAS  Google Scholar 

  30. Shuang Yin, Zhanfang MJ (2019) Self-sacrificial label assisted electroactivity conversion of sensing interface for ultrasensitive electrochemical immunosensor. Biosens Bioelectron 140(C):111355–111355

    Google Scholar 

  31. Yun Z, Wang H, Ma ZJMA (2017) A nanocomposite containing Prussian blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125. Microchim Acta 184(11):4269–4277

    Article  Google Scholar 

  32. Zhang D, Li W, Ma ZJB (2018) Improved sandwich-format electrochemical immunosensor based on “smart” SiO2 @polydopamine nanocarrier. Biosens Bioelectron 109:171–176

    Article  CAS  Google Scholar 

  33. Li Y, Liu L, Wang Y, Ren R, Ju HJS (2020) Enzyme-free colorimetric immunoassay for procalcitonin based on MgFe2O4 sacrificial probe with the Prussian blue production. Sens Actuat B: Chem 316:128163

    Article  CAS  Google Scholar 

  34. Wu Q, Wu G, Wang L, Hu W, Wu H (2015) Facile synthesis and optical properties of Prussian blue microcubes and hollow Fe2O3 microboxes. Mater Sci Semiconduct Process 30:476–481

    Article  CAS  Google Scholar 

  35. Xuan LA, Wen W, Hl B, Yi SD, Qfb C, Fu PLJS (2021) Construction of hierarchical Prussian blue microcrystal with high sunlight absorption for efficient photo-thermal degradation of organic pollutants. Sep Purif Technol 269:118724

    Article  Google Scholar 

  36. Guo CX, Xin TZ, Zhi SL, Xiong WL, Chang MLJAM (2010) Biointerface by cell growth on layered graphene–artificial peroxidase–protein nanostructure for in situ quantitative molecular detection. Adv Mater 22(45):5164–5167

    Article  CAS  Google Scholar 

  37. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang QJAN (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700

    Article  CAS  Google Scholar 

Download references

Funding

This project was financially supported by the National Natural Science Foundation of China (21065009), the Scientific Research Foundation for Changjiang Scholars of Shihezi University (CJXZ201501), Shihezi University’s double-level key projects (SHYL-ZD201802). Meanwhile, thank you very much for the testing help of the analysis and testing center of Shihezi University and also thanks Shiyanjia Lab (www.shiyanjia.com) for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongling Li or Chenglin Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 432 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Wang, M., Lai, W. et al. Preparation of a pH-responsive controlled-release electrochemical immunosensor based on polydopamine encapsulation for ultrasensitive detection of alpha-fetoprotein. Microchim Acta 189, 334 (2022). https://doi.org/10.1007/s00604-022-05433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05433-z

Keywords

Navigation