Skip to main content
Log in

Salt-template preparation of Mo5N6 nanosheets with peroxidase- and catalase-like activities and application for colorimetric determination of 4-aminophenol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mo5N6 nanosheets were synthesized by a nickel-induced growth method and were found to possess peroxidase-like activity in acidic condition and catalase-like activity in weak basic condition. In acidic condition, Mo5N6 nanosheets can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to form a blue color product (TMBOX). At the co-existence of 4-aminophenol (4-AP), 4-AP can react with H2O2 and TMBOX, resulting in the decrease of TMBOX and the fading of blue color. Therefore, a facile, sensitive colorimetric method for the quantitative detection of 4-AP was developed. The linear range for 4-AP was 1.0 to 80.0 μmol⋅L‒1 (R2 = 0.999), and the detection limit was 0.56 μmol⋅L‒1 based on 3σ/k. Resorcinol, aniline, humic acid, and common ions and anions in surface water did not interfere the determination of 4-AP. This colorimetric method was applied to measure the 4-AP in real water sample from Wulong River in Fujian Province of China. The relative standard deviation for the determination of 4-AP was ranged from 0.03 to 1.88%, and the recoveries from spiked samples were ranged between 99.2 and 107.6%. The determination results were consistent with those obtained by HPLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shen Y, Yan H, Guo H, Long Y, Li W (2020) Defect-rich hexagonal boron nitride for the simultaneous determination of 4-aminophenol and phenol. Sensor Actuat B-Chem 303:127248. https://doi.org/10.1016/j.snb.2019.127248

    Article  CAS  Google Scholar 

  2. Šatínský D, Brabcová I, Maroušková A, Chocholouš P, Solich P (2013) Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Anal Bioanal Chem 405:6105–6115. https://doi.org/10.1007/s00216-013-7003-1

    Article  CAS  PubMed  Google Scholar 

  3. Chu Q, Jiang L, Tian X, Ye J (2008) Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection. Anal Chim Acta 606:246–251. https://doi.org/10.1016/j.aca.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  4. Elancheziyan M, Senthilkumar S (2021) Redox-active gold nanoparticle-encapsulated poly (amidoamine) dendrimer for electrochemical sensing of 4-aminophenol. J Mol Liq 325:115131. https://doi.org/10.1016/j.molliq.2020.115131

    Article  CAS  Google Scholar 

  5. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotech 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  6. Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52(8):2190–2200. https://doi.org/10.1021/acs.accounts.9b00140

    Article  CAS  PubMed  Google Scholar 

  7. Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48:3683–3704. https://doi.org/10.1039/C8CS00718G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/C8CS00457A

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  10. Tang Q, Cao S, Ma T, Xiang X, Luo H, Borovskikh P, Rodriguez RD, Guo Q, Qiu L, Cheng C (2020) Engineering biofunctional enzyme-mimics for catalytic therapeutics and diagnostics. Adv Funct Mater 31(7):2007475. https://doi.org/10.1002/adfm.202007475

    Article  CAS  Google Scholar 

  11. Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, Lin Y (2020) When nanozymes meet single-atom catalysis. Angew Chem Int Ed 59(7):2565–2576

    Article  CAS  Google Scholar 

  12. Zhao Q, Zheng X, Xing L, Tang YL, Zhou XM, Hu L, Yao WL, Yan ZQ (2021) 2D Co3O4 stabilizing Rh nano composites developed for visual sensing bioactive urea and toxic p-aminophenol in practice by synergetic-reinforcing oxidase activity. J Hazard Mater 409:125019. https://doi.org/10.1016/j.jhazmat.2020.125019

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee JM (2021) Transition metal nitrides for electrochemical energy applications. Chem Soc Rev 50:1354–1390. https://doi.org/10.1039/D0CS00415D

    Article  CAS  PubMed  Google Scholar 

  14. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y (2014) Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci 5:4615–4620. https://doi.org/10.1039/C4SC02019G

    Article  CAS  Google Scholar 

  15. Zhang Y, Ouyang B, Xu J, Chen S, Rawat RS, Fan HJ (2016) 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv Energy Mater 6:1600221. https://doi.org/10.1002/aenm.201600221

    Article  CAS  Google Scholar 

  16. Wang S, Ge H, Sun S, Zhang J, Liu F, Wen X, Yu X, Wang L, Zhang Y, Xu H, Neuefeind JC, Qin Z, Chen C, Jin C, Li Y, He D, Zhao Y (2015) A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J Am Chem Soc 137:4815–4822. https://doi.org/10.1021/jacs.5b01446

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Chen G, Xu X, Yang G, Liu M, Shao Z (2017) Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons. ACS Catal 7:3540–3547. https://doi.org/10.1021/acscatal.7b00120

    Article  CAS  Google Scholar 

  18. Gong S, Jiang Z, Shi P, Fan J, Xu Q, Min Y (2018) Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: molybdenum nitride/ultrathin graphitic carbon nitride. Appl Catal B-Environ 238:318–327. https://doi.org/10.1016/j.apcatb.2018.07.040

    Article  CAS  Google Scholar 

  19. Yu H, Yang X, Xiao X, Chen M, Zhang Q, Huang L, Wu J, Li T, Chen S, Song L, Gu L, Xia BY, Feng G, Li J, Zhou J (2018) Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv Mater 30:1805655. https://doi.org/10.1002/adma.201805655

    Article  CAS  Google Scholar 

  20. Jin HY, Liu X, Vasileff A, Jiao Y, Zhao Y, Zheng Y, Qiao SZ (2018) Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 12:12761–12769. https://doi.org/10.1021/acsnano.8b07841

    Article  CAS  PubMed  Google Scholar 

  21. Lin F, Dong Z, Yao Y, Yang L, Fang F, Jiao L (2020) Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv Energy Mater 10:2002176. https://doi.org/10.1002/aenm.202002176

    Article  CAS  Google Scholar 

  22. Zhu L, Sun L, Zhang H, Yu D, Aslan H, Zhao J, Li Z, Yu M, Besenbacher F, Sun Y (2019) Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination. Nano Energy 57:842–850. https://doi.org/10.1016/j.nanoen.2018.12.058

    Article  CAS  Google Scholar 

  23. Cao J, Li T, Gao H, Lin Y, Wang X, Wang H, Palacios T, Ling X (2020) Realization of 2D crystalline metal nitrides via selective atomic substitution. Sci Adv 6:eaax8784. https://doi.org/10.1126/sciadv.aax8784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin TR, Zhong LS, Guo LQ, Fu FF, Chen GN (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6:11856–11862. https://doi.org/10.1039/C4NR03393K

    Article  CAS  PubMed  Google Scholar 

  25. Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012. https://doi.org/10.1021/nn300291r

    Article  CAS  PubMed  Google Scholar 

  26. Zhang K, Liu J, Wang L, Jin B, Yang X, Zhang S, Park JH (2020) Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis. J Am Chem Soc 142:8641–8648. https://doi.org/10.1021/jacs.9b13410

    Article  CAS  PubMed  Google Scholar 

  27. Wu B, Xiong Y, Ge Y (2018) Simultaneous removal of SO2 and NO from flue gas with radical ·OH from the catalytic decomposition of gas-phase H2O2 over solid-phase Fe2(SO4)3. Chem Eng J 331:343–354. https://doi.org/10.1016/j.cej.2017.08.097

    Article  CAS  Google Scholar 

  28. Song L, Huang C, Zhang W, Ma M, Chen Z, Gu N, Zhang Y (2016) Graphene oxide-based Fe2O3 hybrid enzyme mimetic with enhanced peroxidase and catalase-like activities. Coll Surfaces A-Physicochem Eng 506:747–755. https://doi.org/10.1016/j.colsurfa.2016.07.037

    Article  CAS  Google Scholar 

  29. Wu X, Chen T, Wang J, Yang G (2018) Few-layered MoSe2 nanosheets as an efficient peroxidase nanozyme for highly sensitive colorimetric detection of H2O2 and xanthine. J Mater Chem B 6:105–111. https://doi.org/10.1039/C7TB02434G

    Article  CAS  PubMed  Google Scholar 

  30. Lin TR, Li ZH, Song ZP, Chen H, Guo LQ, Fu FF, Wu ZJ (2016) Visual and colorimetric detection of p-aminophenol in environmental water and human urine samples based on anisotropic growth of Ag nanoshells on Au nanorods. Talanta 148:62–68. https://doi.org/10.1016/j.talanta.2015.10.056

    Article  CAS  PubMed  Google Scholar 

  31. Shaban SM, Moon BS, Kim H (2021) Selective and sensitive colorimetric detection of p-aminophenol in human urine and paracetamol drugs based on seed-mediated growth of silver nanoparticles. Environ Technol Inno 22:101517. https://doi.org/10.1016/j.eti.2021.101517

    Article  CAS  Google Scholar 

  32. Bocxlaer JFV, Clauwaert KM, Lambert WE (1997) Quantitative colorimetric determination of urinary p-aminophenol with an automated analyzer. Clin Chem 43(4):627–634. https://doi.org/10.1093/clinchem/43.4.627

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21874023) and Special Program for Technical Support of the State Administration for Market Regulation of China (2019YJ023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangqia Guo.

Ethics declarations

Competing interests

The authors declare no competing of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1.07 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Huang, W., Kang, X. et al. Salt-template preparation of Mo5N6 nanosheets with peroxidase- and catalase-like activities and application for colorimetric determination of 4-aminophenol. Microchim Acta 189, 1 (2022). https://doi.org/10.1007/s00604-021-05112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05112-5

Keywords

Navigation