Skip to main content
Log in

A simple “signal off–on” fluorescence nanoplatform for the label-free quantification of exosome-derived microRNA-21 in lung cancer plasma

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple nanoplatform based on molybdenum disulfide (MoS2) nanosheets, a fluorescence quencher (signal off), and a hybridization chain reaction (HCR) signal amplification (signal on) used for the enzyme-free, label-free, and low-background signal quantification of microRNA-21 in plasma exosome is reported. According to the sequence of microRNA-21, carboxy-fluorescein (FAM)-labeled hybridization probe 1 (FAM-H1) and hybridization probes 2 (FAM-H2) were designed with excitation maxima at 488 nm and emission maxima at 518 nm. MoS2 nanosheets could adsorb FAM-H1 and FAM-H2 and quenched their fluorescence signals to reduce the background signal. However, HCR was triggered when microRNA-21 was present. Consequently, HCR products containing a large number of FAM fluorophores can emit a strong fluorescence at 518 nm and could realize the detection of microRNA-21 as low as 6 pmol/L and had a wide linear relation of 0.01–25 nmol/L. This assay has the ability of single-base mismatch recognition and could identify microRNA-21 with high specificity. Most importantly, this approach was successfully applied to the detection of plasma exosomal microRNA-21 in patients with lung cancer, and it is proposed that other targets can also be detected by changing the FAM-H1 and FAM-H2 corresponding to the target sequence. Thus, a novel, hands-on strategy for liquid biopsy was proposed and has a potential application value in the early diagnosis of lung cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and material generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/caac.21654

    Article  Google Scholar 

  2. Terlizzi M, Colarusso C, Pinto A, Sorrentino R (2019) Drug resistance in non-small cell lung cancer (NSCLC): impact of genetic and non-genetic alterations on therapeutic regimen and responsiveness. Pharmacol Ther 202:140–148. https://doi.org/10.1016/j.pharmthera.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  3. Goldstraw P, Chansky K, Crowley J et al (2016) The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J Thorac Oncol 11:39–51. https://doi.org/10.1016/j.jtho.2015.09.009

    Article  Google Scholar 

  4. Carvalho Â, Ferreira G, Seixas D et al (2021) Emerging lab-on-a-chip approaches for liquid biopsy in lung cancer: status in CTCs and ctDNA research and clinical validation. Cancers (Basel) 13:2101. https://doi.org/10.3390/cancers13092101

    Article  Google Scholar 

  5. Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902

    Article  CAS  Google Scholar 

  6. Mashouri L, Yousefi H, Aref AR et al (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 18:75. https://doi.org/10.1186/s12943-019-0991-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oliveto S, Mancino M, Manfrini N, Biffo S (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45–56. https://doi.org/10.4331/wjbc.v8.i1.45

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sanz-Rubio D, Martin-Burriel I, Gil A et al (2018) Stability of circulating exosomal miRNAs in healthy subjects. Sci Rep 8:10306. https://doi.org/10.1038/s41598-018-28748-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dejima H, Iinuma H, Kanaoka R et al (2017) Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 13:1256–1263. https://doi.org/10.3892/ol.2017.5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259–269. https://doi.org/10.1038/nrc1840

    Article  CAS  PubMed  Google Scholar 

  11. Markou A, Tsaroucha EG, Kaklamanis L et al (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704. https://doi.org/10.1373/clinchem.2007.101741

    Article  CAS  PubMed  Google Scholar 

  12. O’Bryan S, Dong S, Mathis JM, Alahari SK (2017) The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. Eur J Cancer 72:1–11. https://doi.org/10.1016/j.ejca.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  13. Dillhoff M, Liu J, Frankel W et al (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 12:2171–2176. https://doi.org/10.1007/s11605-008-0584-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang Q, Liu L, Liu C-H et al (2013) MicroRNA-21 regulates the invasion and metastasis in cholangiocarcinoma and may be a potential biomarker for cancer prognosis. Asian Pac J Cancer Prev 14:829–834. https://doi.org/10.7314/apjcp.2013.14.2.829

    Article  PubMed  Google Scholar 

  15. Zheng W, Zhao J, Tao Y et al (2018) MicroRNA-21: A promising biomarker for the prognosis and diagnosis of non-small cell lung cancer. Oncol Lett 16:2777–2782. https://doi.org/10.3892/ol.2018.8972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179. https://doi.org/10.1093/nar/gni178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Egloff S, Melnychuk N, Reisch A et al (2021) Enzyme-free amplified detection of cellular microRNA by light-harvesting fluorescent nanoparticle probes. Biosens Bioelectron 179:113084. https://doi.org/10.1016/j.bios.2021.113084

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Xu X, Zhou Z et al (2020) Label-free detection of microRNA: two-stage signal enhancement with hairpin assisted cascade isothermal amplification and light-up DNA-silver nanoclusters. Microchim Acta 187:141. https://doi.org/10.1007/s00604-019-4094-1

    Article  CAS  Google Scholar 

  19. Li F, Zhou Y, Yin H, Ai S (2020) Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs. Biosens Bioelectron 166:112476. https://doi.org/10.1016/j.bios.2020.112476

    Article  CAS  PubMed  Google Scholar 

  20. Yang B, Zhang S, Fang X, Kong J (2019) Double signal amplification strategy for ultrasensitive electrochemical biosensor based on nuclease and quantum dot-DNA nanocomposites in the detection of breast cancer 1 gene mutation. Biosens Bioelectron 142:111544. https://doi.org/10.1016/j.bios.2019.111544

    Article  CAS  PubMed  Google Scholar 

  21. Borum RM, Jokerst JV (2021) Hybridizing clinical translatability with enzyme-free DNA signal amplifiers: recent advances in nucleic acid detection and imaging. Biomater Sci 9:347–366. https://doi.org/10.1039/D0BM00931H

    Article  CAS  PubMed  Google Scholar 

  22. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278. https://doi.org/10.1073/pnas.0407024101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miao P, Tang Y (2020) Dumbbell hybridization chain reaction based electrochemical biosensor for ultrasensitive detection of exosomal miRNA. Anal Chem 92:12026–12032. https://doi.org/10.1021/acs.analchem.0c02654

    Article  CAS  PubMed  Google Scholar 

  24. Li N, Chen J, Luo M et al (2017) Highly sensitive chemiluminescence biosensor for protein detection based on the functionalized magnetic microparticles and the hybridization chain reaction. Biosens Bioelectron 87:325–331. https://doi.org/10.1016/j.bios.2016.08.067

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Shan J, Zhang W et al (2017) Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 13:1602660. https://doi.org/10.1002/smll.201602660

    Article  CAS  Google Scholar 

  26. Kalantar-zadeh K, Ou JZ, Daeneke T et al (2015) Two-dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater 25:5086–5099. https://doi.org/10.1002/adfm.201500891

    Article  CAS  Google Scholar 

  27. Zhu C, Zeng Z, Li H et al (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001. https://doi.org/10.1021/ja4019572

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Zheng B, Zhu C et al (2015) Single-layer transition metal dichalcogenide nanosheet based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv Mater 27:935–939. https://doi.org/10.1002/adma.201404568

    Article  CAS  PubMed  Google Scholar 

  29. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22. https://doi.org/10.1002/0471143030.cb0322s30

    Article  PubMed  Google Scholar 

  30. Mahani M, Mousapour Z, Divsar F et al (2019) A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Microchim Acta 186:132. https://doi.org/10.1007/s00604-019-3233-z

    Article  CAS  Google Scholar 

  31. Wang S, Wang L, Xu X et al (2019) MnO2 nanosheet-mediated ratiometric fluorescence biosensor for MicroRNA detection and imaging in living cells. Anal Chim Acta 1063:152–158. https://doi.org/10.1016/j.aca.2019.02.049

    Article  CAS  PubMed  Google Scholar 

  32. Xia Y, Chen T, Zhang L et al (2021) Colorimetric detection of exosomal microRNA through switching the visible-light-induced oxidase mimic activity of acridone derivate. Biosens Bioelectron 173:112834. https://doi.org/10.1016/j.bios.2020.112834

    Article  CAS  PubMed  Google Scholar 

  33. Fang H, Xie N, Ou M et al (2018) Detection of nucleic acids in complex samples via magnetic microbead-assisted catalyzed hairpin assembly and “DD-A” FRET. Anal Chem 90:7164–7170. https://doi.org/10.1021/acs.analchem.8b01330

    Article  CAS  PubMed  Google Scholar 

  34. Fakhri N, Abarghoei S, Dadmehr M et al (2020) Paper based colorimetric detection of miRNA-21 using Ag/Pt nanoclusters. Spectrochim Acta Part A Mol Biomol Spectrosc 227:117529. https://doi.org/10.1016/j.saa.2019.117529

    Article  CAS  Google Scholar 

  35. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Watabe S, Kikuchi Y, Morita S et al (2020) Clinicopathological significance of microRNA-21 in extracellular vesicles of pleural lavage fluid of lung adenocarcinoma and its functions inducing the mesothelial to mesenchymal transition. Cancer Med 9:2879–2890. https://doi.org/10.1002/cam4.2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao Z, Yuan H, Mao Y et al (2021) In situ detection of plasma exosomal microRNA for lung cancer diagnosis using duplex-specific nuclease and MoS2 nanosheets. Analyst 146:1924–1931. https://doi.org/10.1039/d0an02193h

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 81973099).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yongjun Wu. Methodology: Yanhua Mao and Jinlan Wei. Formal analysis and investigation: Jinlan Wei, Longjie Wu. Writing, original draft preparation: Sitian He and Jinlan Wei. Writing review and editing: Yongjun Wu, Hongchao Guo, Clement Yaw Effah, Jinlan Wei, Xinlian Liu. Resources: Yanhua Mao, Sitian He, Jinlan Wei, Yongjun Wu. Supervision: Yongjun Wu, Sitian He.

Corresponding author

Correspondence to Yongjun Wu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All sampled subjects were informed and consented.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1039 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., He, S., Mao, Y. et al. A simple “signal off–on” fluorescence nanoplatform for the label-free quantification of exosome-derived microRNA-21 in lung cancer plasma. Microchim Acta 188, 397 (2021). https://doi.org/10.1007/s00604-021-05051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05051-1

Keywords

Navigation