Skip to main content
Log in

l-Histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An interesting phenomenon is described that the fluorescence signal of poly(adenine) (A) DNA-templated gold nanoclusters (AuNCs) is greatly improved in the presence of l-histidine by means of l-histidine-DNA interaction. The modified nanoclusters display strong fluorescence emission with excitation/emission maxima at 290/475 nm. The fluorescence quantum yield (QY) is improved from 1.9 to 6.5%. Fluorescence enhancement is mainly ascribed to the l-histidine-DNA interaction leading to conformational changes of the poly(A) DNA template, which offer a better microenvironment to protect AuNCs. The assay enables l-histidine to be determined with good sensitivity and a linear response that covers the 1 to 50 nM l-histidine concentration range with a 0.3 nM limit of detection. The proposed method has been applied to the determination of imidazole-containing drugs in pharmaceutical samples.

Graphical abstract

A turn-on fluorescent method has been designed for the sensitive detection of l-histidine as well as imidazole-containing drugs on the basis of the l-histidine-DNA interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li JJ, Zhu JJ, Xu K (2014) Fluorescent metal nanoclusters: from synthesis to applications. Trends Anal Chem 58:90–98

    Article  CAS  Google Scholar 

  2. Zhang LB, Wang EK (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9:132–157

    Article  CAS  Google Scholar 

  3. Liu JW (2014) DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. Trends Anal Chem 58:99–111

    Article  CAS  Google Scholar 

  4. Cai YY, Wang J, Liu CY, Yang SQ, Zhang YJ, Liu AH (2020) Histidine-triggered turning-on of gold/copper nanocluster fluorescence for the sensitive and selective detection of histidine. Chem Commun 56:11637–11640

    Article  CAS  Google Scholar 

  5. Zhang ZQ, Liu TT, Wang SS, Ma J, Zhou T, Wang F, Wang XF, Zhang GD (2019) DNA-templated gold nanocluster as a novel fluorometric sensor for glutathione determination. J Photoch Photobio A 370:89–93

    Article  CAS  Google Scholar 

  6. Gu ZF, Cao ZJ (2018) Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine. Anal Bioanal Chem 410:4991–4999

    Article  CAS  Google Scholar 

  7. Zhou Y, Zhou TS, Zhang M, Shi GY (2014) A DNA-scaffolded silver nanocluster/Cu2+ ensemble as a turn-on fluorescent probe for histidine. Analyst 139:3122–3126

    Article  CAS  Google Scholar 

  8. Tao Y, Li MQ, Ren JS, Qu XG (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44:8636–8663

    Article  CAS  Google Scholar 

  9. Liu R, Wang CQ, Hu JY, Su YY, Lv Y (2018) DNA-templated copper nanoparticles: versatile platform for label-free bioassays. Trends Anal Chem 105:436–452

    Article  CAS  Google Scholar 

  10. Zhang LL, Zhao JJ, Zhang H, Jiang JH, Yu RQ (2013) Double strand DNA-templated copper nanoparticle as a novel fluorescence indicator for label-free detection of polynucleotide kinase activity. Biosens Bioelectron 44:6–9

    Article  CAS  Google Scholar 

  11. Lian JY, Liu Q, Jin Y, Li BX (2017) Histone-DNA interaction: an effective approach to improve the fluorescence intensity and stability of DNA-templated Cu nanoclusters. Chem Commun 53:12568–12571

    Article  CAS  Google Scholar 

  12. Zhang L, Cai QY, Li J, Ge J, Wang JY, Dong ZZ, Li ZH (2015) A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles. Biosens Bioelectron 69:77–82

    Article  CAS  Google Scholar 

  13. Liu G, Li J, Feng DQ, Zhu JJ, Wang W (2017) Silver nanoclusters beacon as stimuli-responsive versatile platform for multiplex DNAs detection and aptamer-substrate complexes sensing. Anal Chem 89:1002–1008

    Article  CAS  Google Scholar 

  14. Wang HB, Zhang HD, Chen Y, Liu YM (2015) A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens Bioelectron 74:581–586

    Article  CAS  Google Scholar 

  15. Shen CC, Xia XD, Hu SQ, Yang MH, Wang JX (2015) Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal Chem 87:693–698

    Article  CAS  Google Scholar 

  16. Petty JT, Zheng J, Hud NV, Dickson RM (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212

    Article  CAS  Google Scholar 

  17. Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A (2010) Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed 49:5665–5667

    Article  CAS  Google Scholar 

  18. Qing ZH, He XX, He DG, Wang KM, Xu FZ, Qing TP, Yang XH (2013) Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew Chem Int Ed 52:9719–9722

    Article  CAS  Google Scholar 

  19. Chen J, Ji X, He ZK (2017) Smart composite reagent composed of double-stranded DNA-templated copper nanoparticle and SYBR green I for hydrogen peroxide related biosensing. Anal Chem 89:3988–3995

    Article  CAS  Google Scholar 

  20. Qing ZH, Bai A, Xing S, Zou Z, He X, Wang KM, Yang RH (2019) Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 137:96–109

    Article  CAS  Google Scholar 

  21. Lyu D, Li J, Wang X, Guo WW, Wang EK (2019) Cationic-polyelectrolyte- modified fluorescent DNA-silver nanoclusters with enhanced emission and higher stability for rapid bioimaging. Anal Chem 91:2050–2057

    Article  CAS  Google Scholar 

  22. Tian X, Kong XJ, Zhu ZM, Chen TT, Chu X (2015) A new label-free and turn-on strategy for endonuclease detection using a DNA-silver nanocluster probe. Talanta 131:116–120

    Article  CAS  Google Scholar 

  23. Guo LY, Tang T, Hu LS, Yang MH, Chen X (2017) Fluorescence assay of Fe (III) in human serum samples based on pH dependent silver nanoclusters. Sensors Actuators B Chem 241:773–778

    Article  CAS  Google Scholar 

  24. Wang GF, Wan J, Zhang XJ (2017) TTE DNA-Cu NPs: enhanced fluorescence and application in a target DNA triggered dual-cycle amplification biosensor. Chem Commun 53:5629–5632

    Article  CAS  Google Scholar 

  25. Wang HB, Zhang HD, Chen Y, Huang KJ, Liu YM (2015) A label-free and ultrasensitive fluorescent sensor for dopamine detection based on double-stranded DNA templated copper nanoparticles. Sensors Actuators B Chem 220:146–153

    Article  CAS  Google Scholar 

  26. Qing ZH, Zhu L, Yang S, Cao Z, He X, Wang KM, Yang RH (2016) In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu2+ detection and its toxicides screening. Biosens Bioelectron 78:471–476

    Article  CAS  Google Scholar 

  27. Yeh H, Sharma J, Shih I, Vu DM, Martinez JS, Werner JH (2012) A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J Am Chem Soc 134:11550–11558

    Article  CAS  Google Scholar 

  28. Yuan Y, Li W, Liu Z, Nie Z, Huang Y, Yao S (2014) A versatile biosensing system for DNA-related enzyme activity assay via the synthesis of silver nanoclusters using enzymatically-generated DNA as template. Biosens Bioelectron 61:321–327

    Article  CAS  Google Scholar 

  29. Li J, Si L, Bao J, Wang Z, Dai ZH (2017) Fluorescence regulation of poly(thymine)-Templated copper nanoparticles via an enzyme-triggered reaction toward sensitive and selective detection of alkaline phosphatase. Anal Chem 89:3681–3686

    Article  CAS  Google Scholar 

  30. Li ZY, Wu YT, Tseng WL (2015) UV-light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: application to ratiometric fluorescent sensing of nucleic acids. ACS Appl Mater Interfaces 7:23708–23716

    Article  CAS  Google Scholar 

  31. Wang HB, Li Y, Bai HY, Liu YM (2018) DNA-templated Au nanoclusters and MnO2 sheets: a label-free and universal fluorescence biosensing platform. Sensors Actuators B Chem 259:204–210

    Article  CAS  Google Scholar 

  32. Wang HB, Bai HY, Dong GL, Liu YM (2019) DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: a sensitive fluorescent biosensing platform for DNA detection. Nanoscale Adv 1:1482–1488

    Article  CAS  Google Scholar 

  33. Wang HB, Zhang HD, Chen Y, Liu YM (2015) Inhibition of double-stranded DNA templated copper nanoparticles as label-free fluorescent sensors for L-histidine detection. New J Chem 39:8896–8900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. U1704153), 1000 Talents Program of Zhongyuan, Plan for Young Excellent Teachers in Universities of Henan Province (No. 2017GGJS100), Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HB., Mao, AL., Tao, BB. et al. l-Histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters. Microchim Acta 188, 198 (2021). https://doi.org/10.1007/s00604-021-04853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04853-7

Keywords

Navigation