Skip to main content
Log in

Target-responsive ratiometric fluorescent aptasensor for OTA based on energy transfer between [Ru(bpy)3]2+ and silica quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ratiometric fluorescent aptasensor based on energy transfer between [Ru(bpy)3]2+ and silica quantum dots (silica QDs) for assaying OTA was fabricated. The aptamer for OTA was used as the gate to shield the fluorescent reagent [Ru(bpy)3]2+ into mesoporous silica nanoparticle (MSN). In the presence of OTA, the constrained [Ru(bpy)3]2+ was released from MSN due to a target-induced aptamer conformational change. The released [Ru(bpy)3]2+ adsorbed onto the negatively charged silica QDs through electrostatic interaction. This creates appearance of fluorescence from [Ru(bpy)3]2+ at 625 nm and decrease of the fluorescence from silica QDs at 442 nm owing to the energy transfer. The value of FL625nm/FL442nm was in proportion to the concentration of OTA in the range 0.5~100 ng mL−1 with a LOD of 0.08 ng mL−1. Practical applicability of this method was validated by the determination of OTA in flour samples.

The sensing principle of this sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuipergoodman T (1996) Risk assessment of ochratoxin A: an update. Food Additives & Contaminants 13:53–57

    Article  CAS  Google Scholar 

  2. Alonso-Lomillo MA, Domínguez-Renedo O, Román LT, Arcos-Martínez MJ (2011) Horseradish peroxidase-screen printed biosensors for determination of ochratoxin A. Anal Chim Acta 688(1):49–53

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen KF, Ngemela AF, Jensen LB, de Medeiros LS, Rasmussen PH (2015) Correction to UHPLC-MS/MS determination of ochratoxin A and fumonisins in coffee using QuEChERS extraction combined with mixed-mode SPE purification. J Agric Food Chem 63(3):1029–1034

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka T, Hasegawa A, Matsuki Y, Lee US, Ueno Y (1985) Rapid and sensitive determination of zearalenone in cereals by high-performance liquid chromatography with fluorescence detection. J Chromatogr 328:271–278

    Article  CAS  PubMed  Google Scholar 

  5. Yang C, Wang Y, Marty J-L, Yang X (2011) Aptamer-based colorimetric biosensing of ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26(5):2724–2727. https://doi.org/10.1016/j.bios.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  6. Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N, Wang C, Dong X, Huang X (2016) Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 77:1183–1191. https://doi.org/10.1016/j.bios.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  7. Liu R, Huang Y, Ma Y, Jia S, Gao M, Li J, Zhang H, Xu D, Wu M, Chen Y, Zhu Z, Yang C (2015) Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A. Acs Appl Mater Inter 7(12):6982–6990. https://doi.org/10.1021/acsami.5b01120

    Article  CAS  Google Scholar 

  8. Lee J, Jeon CH, Ahn SJ, Ha TH (2014) Highly stable colorimetric aptamer sensors for detection of ochratoxin A through optimizing the sequence with the covalent conjugation of hemin. Analyst 139(7):1622–1627. https://doi.org/10.1039/c3an01639k

    Article  CAS  PubMed  Google Scholar 

  9. Hu S, Ouyang W, Guo L, Lin Z, Jiang X, Qiu B, Chen G (2017) Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens Bioelectron 92:718–723. https://doi.org/10.1016/j.bios.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  10. Lu Z, Chen X, Hu W (2017) A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection. Sensor Actuat, B-Chem 246:61–67. https://doi.org/10.1016/j.snb.2017.02.062

    Article  CAS  Google Scholar 

  11. Zhang J, Xia Y-K, Chen M, Wu D-Z, Cai S-X, Liu M-M, He W-H, Chen J-H (2016) A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn(II)-ion signal-enhancement for simultaneous detection of OTA and AFB(1). Sensor Actuat, B-Chem 235:79–85. https://doi.org/10.1016/j.snb.2016.05.061

    Article  CAS  Google Scholar 

  12. Lv L, Li D, Cui C, Zhao Y, Guo Z (2017) Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens Bioelectron 87:136–141. https://doi.org/10.1016/j.bios.2016.08.024

    Article  CAS  PubMed  Google Scholar 

  13. Wang S, Zhang Y, Pang G, Zhang Y, Guo S (2017) Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin A sensor. Anal Chem 89(3):1704–1709. https://doi.org/10.1021/acs.analchem.6b03913

    Article  CAS  PubMed  Google Scholar 

  14. Dai S, Wu S, Duan N, Chen J, Zheng Z, Wang Z (2017) An ultrasensitive aptasensor for ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Biosens Bioelectron 91:538–544. https://doi.org/10.1016/j.bios.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  15. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM (2017) Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker methylene blue. Microchim Acta 184(4):1151–1159. https://doi.org/10.1007/s00604-017-2113-7

    Article  CAS  Google Scholar 

  16. Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty J-L, Korri-Youssoufi H (2016) Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal Chim Acta 920:37–46. https://doi.org/10.1016/j.aca.2016.03.038

    Article  CAS  PubMed  Google Scholar 

  17. Tan Y, Wei X, Zhang Y, Wang P, Qiu B, Guo L, Lin Z, Yang H-H (2015) Exonuclease-catalyzed target recycling amplification and immobilization-free electrochemical aptasensor. Anal Chem 87(23):11826–11831. https://doi.org/10.1021/acs.analchem.5b03314

    Article  CAS  PubMed  Google Scholar 

  18. Sun A-L, Zhang Y-F, Sun G-P, Wang X-N, Tang D (2017) Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens Bioelectron 89:659–665. https://doi.org/10.1016/j.bios.2015.12.032

    Article  CAS  Google Scholar 

  19. Mishra RK, Hayat A, Catanante G, Ocana C, Marty J-L (2015) A label free aptasensor for ochratoxin A detection in cocoa beans: an application to chocolate industries. Anal Chim Acta 889:106–112. https://doi.org/10.1016/j.aca.2015.06.052

    Article  CAS  Google Scholar 

  20. Wang C, Qian J, An K, Huang X, Zhao L, Liu Q, Hao N, Wang K (2017) Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosens Bioelectron 89:802–809. https://doi.org/10.1016/j.bios.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  21. Huang L, Wu J, Zheng L, Qian H, Xue F, Wu Y, Pan D, Adeloju SB, Chen W (2013) Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Anal Chem 85(22):10842–10849. https://doi.org/10.1021/ac402228n

    Article  CAS  PubMed  Google Scholar 

  22. Zhu X, Kou F, Xu H, Han Y, Yang G, Huang X, Chen W, Chi Y, Lin Z (2018) Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sensor Actuat, B-Chem 270:263–269. https://doi.org/10.1016/j.snb.2018.05.048

    Article  CAS  Google Scholar 

  23. Wu S, Liu L, Duan N, Wang W, Yu Q, Wang Z (2018) A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Microchim Acta 185(11):497. https://doi.org/10.1007/s00604-018-3022-0

    Article  CAS  Google Scholar 

  24. Qian J, Wang K, Wang C, Hua M, Yang Z, Liu Q, Mao H, Wang K (2015) A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A. Analyst 140(21):7434–7442

    Article  CAS  PubMed  Google Scholar 

  25. Song D, Yang R, Fang S, Liu Y, Long F (2018) A FRET-based dual-color evanescent wave optical fiber aptasensor for simultaneous fluorometric determination of aflatoxin M1 and ochratoxin A. Microchim Acta 185(11):508. https://doi.org/10.1007/s00604-018-3046-5

    Article  CAS  Google Scholar 

  26. Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee S-T, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135(22):8350–8356. https://doi.org/10.1021/ja4026227

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Guo S, Jiang Z, Mao G, Ji X, He Z (2018) Rox-DNA functionalized silicon nanodots for ratiometric detection of mercury ions in live cells. Anal Chem 90(16):9796–9804. https://doi.org/10.1021/acs.analchem.8b01574

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Guo S, Cheng S, Ji X, He Z (2017) Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement. Biosens Bioelectron 94:478–484

    Article  CAS  PubMed  Google Scholar 

  29. Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X (2017) One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem 89(5):3001–3008. https://doi.org/10.1021/acs.analchem.6b04509

    Article  CAS  PubMed  Google Scholar 

  30. Hu Z, Tan J, Lai Z, Zheng R, Zhong J, Wang Y, Li X, Yang N, Li J, Yang W (2017) Aptamer combined with fluorescent silica nanoparticles for detection of hepatoma cells. Nanoscale Res Lett 12(1):96–103

    Article  PubMed  Google Scholar 

  31. Zhao Q, Zhang R, Ye D, Zhang S, Chen H, Kong J (2017) Ratiometric fluorescent silicon quantum dots–Ce6 complex probe for the live cell imaging of highly reactive oxygen species. Acs Appl Mater Inter 9(3):2052–2058. https://doi.org/10.1021/acsami.6b12047

    Article  CAS  Google Scholar 

  32. Luo L, Song Y, Zhu C, Fu S, Shi Q, Sun Y-M, Jia B, Du D, Xu Z-L, Lin Y (2018) Fluorescent silicon nanoparticles-based ratiometric fluorescence immunoassay for sensitive detection of ethyl carbamate in red wine. Sensor Actuat, B-Chem 255(Part 3):2742–2749. https://doi.org/10.1016/j.snb.2017.09.088

    Article  CAS  Google Scholar 

  33. Sun Y, Xu J, Li W, Cao B, Wang D, Yang Y, Lin Q, Li J, Zheng T (2014) Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer–photonic crystal encoded suspension array. Anal Chem 86(23):11797–11802. https://doi.org/10.1021/ac503355n

    Article  CAS  Google Scholar 

  34. Wen G, Zeng X, Wen X, Liao W (2014) Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films. J Appl Phys 115(16):164303–164311

    Article  Google Scholar 

  35. Zhang X, Chen X, Kai S, Wang H-Y, Yang J, Wu F-G, Chen Z (2015) Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal Chem 87(6):3360–3365. https://doi.org/10.1021/ac504520g

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Yan H, Shangguan J, Yang X, Wang M, Liu W (2018) A fluorometric aptamer-based assay for ochratoxin A using magnetic separation and a cationic conjugated fluorescent polymer. Microchim Acta 185(9):427. https://doi.org/10.1007/s00604-018-2962-8

    Article  CAS  Google Scholar 

  37. Wang C, Tan R, Chen D (2018) Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles. Talanta 182:363–370. https://doi.org/10.1016/j.talanta.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  38. Soh JH, Lin Y, Rana S, Ying JY, Stevens MM (2015) Colorimetric detection of small molecules in complex matrixes via target-mediated growth of aptamer-functionalized gold nanoparticles. Anal Chem 87(15):7644–7652. https://doi.org/10.1021/acs.analchem.5b00875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H. Xu and X. Zhu thank the Natural Science Funds of Fujian Province for Distinguished Young Scholar (2019J06021) and the University Distinguished Young Research Talent Training Program of Fujian Province, respectively.

Funding

This project was financially supported by NSFC (81773894, 21305014, and 21677033), Fujian Provincial Department of Science and Technology, China (grant number 2017Y0002), and FJ 2011 Program (grant number 2015-75).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huifeng Xu or Guidi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, W., Lin, L. et al. Target-responsive ratiometric fluorescent aptasensor for OTA based on energy transfer between [Ru(bpy)3]2+ and silica quantum dots. Microchim Acta 187, 270 (2020). https://doi.org/10.1007/s00604-020-04245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04245-3

Keywords

Navigation