Skip to main content
Log in

Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

β-Cyclodextrin (β-CD) possess a hydrophobic inner cavity and a hydrophilic exterior surface. They exhibit excellent inclusion properties with the guest molecules that match cavity size, and β-CD-based materials drew widespread attention in electrochemical sensors. The hydroxy groups at the edge of the cavity can form hydrogen bonds and undergo electrostatic and dipole-dipole interactions with other molecules. This review (with 109 refs.) reveals β-CD-based detection mechanisms from the viewpoint of the size/shape-fit concept, and summarizes the current state of multiple electrochemical sensors based on the use of β-CD and functionalized β-CD such as carboxymethyl-β-CD, mono-(6-ethanediamine-6-deoxy)-β-CD, hydroxypropyl-β-CD, thio-β-cyclodextrin, and others.

Schematic diagram of cyclodextrin inclusion complex formation in aqueous solution, represents water molecules, represents guest molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang J, Tan W, Tao Y, Deng L, Qin Y, Kong Y (2018) A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers. Electrochem Commun 86:57–62

    Article  CAS  Google Scholar 

  2. Fan L, Hao Q, Kan X (2018) Three-dimensional graphite paper based imprinted electrochemical sensor for tertiary butylhydroquinone selective recognition and sensitive detection. Sensors Actuators B 256:520–527

    Article  CAS  Google Scholar 

  3. Lenik J (2017) Cyclodextrins based electrochemical sensors for biomedical and pharmaceutical analysis. Curr Med Chem 24:2359–2391

    Article  CAS  PubMed  Google Scholar 

  4. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44

    Article  CAS  Google Scholar 

  5. Hui BY, Raoov M, Zain NNM, Mohamad S, Osman H (2017) Combination of cyclodextrin and ionic liquid in analytical chemistry: current and future perspectives. Crit Rev Anal Chem 47:454–467

    Article  CAS  PubMed  Google Scholar 

  6. Gao Y, Jiao T, Xing R, Zhang L, Zhou J, Peng Q (2017) Construction and self-assembly of beta-cyclodextrin derivative composite Langmuir films: host-guest reaction and nanostructures. Colloids Surf, A 533:68–75

    Article  CAS  Google Scholar 

  7. Palanisamy S, Thirumalraj B, Chen SM (2016) A novel amperometric nitrite sensor based on screen printed carbon electrode modified with graphite/β-cyclodextrin composite. J Electroanal Chem 760:97–104

    Article  CAS  Google Scholar 

  8. Jiang Z, Li G, Zhang M (2016) Electrochemical sensor based on electro-polymerization of β-cyclodextrin and reduced-graphene oxide on glassy carbon electrode for determination of gatifloxacin. Sensors Actuators B Chem 228:59–65

    Article  CAS  Google Scholar 

  9. Alam AU, Qin Y, Howlader MM, Hu NX, Deen MJ (2018) Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sensors Actuators B Chem 254:896–909

    Article  CAS  Google Scholar 

  10. Liu Z, Xue Q, Guo Y (2017) Sensitive electrochemical detection of rutin and isoquercitrin based on SH-β-cyclodextrin functionalized graphene-palladium nanoparticles. Biosens Bioelectron 89:444–452

    Article  CAS  PubMed  Google Scholar 

  11. Aree T, Chaichit N (2003) Crystal structure of β-cyclodextrin–benzoic acid inclusion complex. Carbohydr Res 338:439–446

    Article  CAS  PubMed  Google Scholar 

  12. Iimura Y, Fukuyama M, Hibara A, Harada M, Okada T (2017) Enhanced chiral recognition by β-cyclodextrin at liquid/liquid interfaces as revealed by chromatographic and interfacial tension measurements. J Colloid Interface Sci 508:469–475

    Article  CAS  PubMed  Google Scholar 

  13. Lyu Z, Shi X, Lei J, Yuan Y, Yuan L, Yu Q, Chen H (2017) Promoting neural differentiation of embryonic stem cells using β-cyclodextrin sulfonate. J Mater Chem B 5:1896–1900

    Article  CAS  PubMed  Google Scholar 

  14. Wang M, Fang G, Liu P, Zhou D, Ma C, Zhang D, Zhan J (2016) Fe3O4@ β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP). Appl Catal B Environ 188:113–122

    Article  CAS  Google Scholar 

  15. Minns JW, Khan A (2002) α-Cyclodextrin-\( {\mathrm{I}}_3^{-} \) host-guest complex in aqueous solution: Theoretical and experimental studies. J Phys Chem A 106:6421–6425

    Article  CAS  Google Scholar 

  16. Kano K, Hasegawa H (2001) Chiral recognition of helical metal complexes by modified cyclodextrins. J Am Chem Soc 123:10616–10627

    Article  CAS  PubMed  Google Scholar 

  17. Quintans JS, Pereira EW, Carvalho YM, Menezes PP, Serafini MR, Batista MV, Gelain DP (2017) Host-guest inclusion complexation of β-cyclodextrin and hecogenin acetate to enhance anti-hyperalgesic effect in an animal model of musculoskeletal pain. Process Biochem 59:123–131

    Article  CAS  Google Scholar 

  18. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun 2:511

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Bao X, Fang A, Li H, Zhou Y, Liu Y, Song X (2018) Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion complex: a potential therapeutic ocular drug delivery system. Front Pharmacol 9:91

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Li X, Luo C, Sun M, Li L, Duan H (2014) Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/au nanoparticles composites for chrysoidine analysis. Electrochim Acta 130:519–525

    Article  CAS  Google Scholar 

  21. Park JH, Kim DS, Mustapha O, Yousaf AM, Kim JS, Kim DW, Kim JO (2018) Comparison of a revaprazan-loaded solid dispersion, solid SNEDDS and inclusion compound: physicochemical characterisation and pharmacokinetics. Colloids Surf, B 162:420–426

    Article  CAS  Google Scholar 

  22. Gong ZS, Duan LP, Tang AN (2015) Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182:1297–1304

    Article  CAS  Google Scholar 

  23. Li QL, Lu WX, Wan N, Ding SN (2016) Tuning optical properties of perovskite nanocrystals by supermolecular mercapto-β-cyclodextrin. Chem Commun 52:12342–12345

    Article  CAS  Google Scholar 

  24. Tang P, Li S, Wang L, Yang H, Yan J, Li H (2015) Inclusion complexes of chlorzoxazone with β-and hydroxypropyl-β-cyclodextrin: characterization, dissolution, and cytotoxicity. Carbohydr Polym 131:297–305

    Article  CAS  PubMed  Google Scholar 

  25. Ortega-Caballero F, Rousseau C, Christensen B, Petersen TE, Bols M (2005) Remarkable supramolecular catalysis of glycoside hydrolysis by a cyclodextrin cyanohydrin. J Am Chem Soc 127:3238–3239

    Article  CAS  PubMed  Google Scholar 

  26. Zhao MX, Xia Q, Feng XD, Zhu XH, Mao ZW, Ji LN, Wang K (2010) Synthesis, biocompatibility and cell labeling of L-arginine-functional β-cyclodextrin-modified quantum dot probes. Biomaterials 31:4401–4408

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Chen Y, Li XY, Liu Y (2007) Synthesis of oligo (ethylenediamino)-β-cyclodextrin modified gold nanoparticle as a DNA concentrator. Mol Pharm 4:189–198

    Article  CAS  PubMed  Google Scholar 

  28. Gangadhar T, Bhoi VI, Kumar S, Murthy CN (2014) Supramolecular self-assembly and nanoencapsulation of [60] fullerene by bis-β-cyclodextrin. J Incl Phenom Macrocycl Chem 79:215–223

    Article  CAS  Google Scholar 

  29. Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Yan D (2013) A supramolecular Janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution. J Am Chem Soc 135:4765–4770

    Article  CAS  PubMed  Google Scholar 

  30. Hirayama F, Hirashima N, Abe K, Uekama K, Ijitsu T, Ueno M (1988) Utilization of diethyl-β-cyclodextin as sustained-release carrier for isosorbide dinitrate. J Pharm Sci-US 77:233–236

    Article  CAS  Google Scholar 

  31. Caracciolo F, Lucini Paioni A, Melone L, Filibian M, Carretta P (2018) Proton and Carbon-13 dynamic nuclear polarization of methylated β-CycloDextrins. J Phys Chem B 122:1836–1845

    Article  CAS  PubMed  Google Scholar 

  32. Dalvano BE, Wenzel TJ (2017) Sulfated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds. Tetrahedron Asymmetry 28:1061–1069

    Article  CAS  Google Scholar 

  33. Tao Y, Dai J, Kong Y, Sha Y (2014) Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly (L-glutamic acid). Anal Chem 86:2633–2639

    Article  CAS  PubMed  Google Scholar 

  34. Ma X, Chen Z, Chen X, Chen R, Zheng X (2011) Preparation of imprinted PVB/β-CD nanofiber by electrospinning technique and its selective binding abilities for Naringin. Chin J Chem 29:1753–1758

    Article  CAS  Google Scholar 

  35. Tao Y, Gu X, Deng L, Qin Y, Xue H, Kong Y (2015) Chiral recognition of d-tryptophan by confining high-energy water molecules inside the cavity of copper-modified β-cyclodextrin. J Phys Chem C 119:8183–8190

    Article  CAS  Google Scholar 

  36. Jiang L, Peng Y, Yan Y, Huang J (2011) Aqueous self-assembly of SDS@ 2 β-CD complexes: lamellae and vesicles. Soft Matter 7:1726–1731

    Article  CAS  Google Scholar 

  37. Rekharsky MV, Inoue Y (2002) Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-β-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and coulombic interactions. J Am Chem Soc 124:813–826

    Article  CAS  PubMed  Google Scholar 

  38. Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38:875–882

    Article  CAS  PubMed  Google Scholar 

  39. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh S, Badruddoza AZM, Uddin MS, Hidajat K (2011) Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe3O4/SiO2 core-shell nanoparticles. J Colloid Interface Sci 354:483–492

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Wu L, Zhou J, Zhang X, Chen J (2015) A new ratiometric electrochemical sensor for sensitive detection of bisphenol a based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode. J Electroanal Chem 742:97–103

    Article  CAS  Google Scholar 

  42. Xie S, Zhang J, Yuan Y, Chai Y, Yuan R (2015) An electrochemical peptide cleavage-based biosensor for prostate specific antigen detection via host–guest interaction between ferrocene and β-cyclodextrin. Chem Commun 51:3387–3390

    Article  CAS  Google Scholar 

  43. Palanisamy S, Thangavelu K, Chen SM, Velusamy V, Chang MH, Chen TW, Ramaraj SK (2017) Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sensors Actuators B Chem 243:888–894

    Article  CAS  Google Scholar 

  44. Huang S, Lu S, Huang C, Sheng J, Su W, Zhang L, Xiao Q (2015) Sensitive and selective stripping voltammetric determination of copper (II) using a glassy carbon electrode modified with amino-reduced graphene oxide and β-cyclodextrin. Microchim Acta 182:2529–2539

    Article  CAS  Google Scholar 

  45. Zhan F, Gao F, Wang X, Xie L, Gao F, Wang Q (2016) Determination of lead (II) by adsorptive stripping voltammetry using a glassy carbon electrode modified with β-cyclodextrin and chemically reduced graphene oxide composite. Microchim Acta 183:1169–1176

    Article  CAS  Google Scholar 

  46. Liu Y, Wei M, Hu Y, Zhu L, Du J (2018) An electrochemical sensor based on a molecularly imprinted polymer for determination of anticancer drug Mitoxantrone. Sensors Actuators B Chem 255:544–551

    Article  CAS  Google Scholar 

  47. Karthik R, Karikalan N, Chen SM, Gnanaprakasam P, Karuppiah C (2017) Voltammetric determination of the anti-cancer drug nilutamide using a screen-printed carbon electrode modified with a composite prepared from β-cyclodextrin, gold nanoparticles and graphene oxide. Microchim Acta 184:507–514

    Article  CAS  Google Scholar 

  48. Palanisamy S, Wang YT, Chen SM, Thirumalraj B, Lou BS (2016) Direct electrochemistry of immobilized hemoglobin and sensing of bromate at a glassy carbon electrode modified with graphene and β-cyclodextrin. Microchim Acta 183:1953–1961

    Article  CAS  Google Scholar 

  49. Li S, Wu X, Zhang Q, Li P (2016) Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin. Microchim Acta 183:1433–1439

    Article  CAS  Google Scholar 

  50. Ou J, Zhu Y, Kong Y, Ma J (2015) Graphene quantum dots/β-cyclodextrin nanocomposites: a novel electrochemical chiral interface for tryptophan isomer recognition. Electrochem Commun 60:60–63

    Article  CAS  Google Scholar 

  51. Feng W, Liu C, Lu S, Zhang C, Zhu X, Liang Y, Nan J (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181:501–509

    Article  CAS  Google Scholar 

  52. Wu T, Wei X, Ma X, Li J (2017) Amperometric sensing of L-phenylalanine using a gold electrode modified with a metal organic framework, a molecularly imprinted polymer, and β-cyclodextrin-functionalized gold nanoparticles. Microchim Acta 184:2901–2907

    Article  CAS  Google Scholar 

  53. Sun Y, Wei T, Jiang M, Xu L, Xu Z (2018) Voltammetric sensor for chloramphenicol determination based on a dual signal enhancement strategy with ordered mesoporous carbon@ polydopamine and β-cyclodextrin. Sensors Actuators B Chem 255:2155–2162

    Article  CAS  Google Scholar 

  54. Zaidi SA (2017) Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Biosens Bioelectron 94:714–718

    Article  CAS  PubMed  Google Scholar 

  55. Zhao H, Yang L, Li Y, Ran X, Ye H, Zhao G, Li CP (2017) A comparison study of macrocyclic hosts functionalized reduced graphene oxide for electrochemical recognition of tadalafil. Biosens Bioelectron 89:361–369

    Article  CAS  PubMed  Google Scholar 

  56. Ran X, Qu Q, Qian X, Xie W, Li S, Li L, Yang L (2018) Water-soluble pillar [6] arene functionalized nitrogen-doped carbon quantum dots with excellent supramolecular recognition capability and superior electrochemical sensing performance towards TNT. Sensors Actuators B Chem 257:362–371

    Article  CAS  Google Scholar 

  57. Zhang L, Han Y, Zhu J, Zhai Y, Dong S (2015) Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots. Anal Chem 87:2033–2036

    Article  CAS  PubMed  Google Scholar 

  58. Cai Z, Li F, Wu P, Ji L, Zhang H, Cai C, Gervasio DF (2015) Synthesis of nitrogen-doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene. Anal Chem 87:11803–11811

    Article  CAS  PubMed  Google Scholar 

  59. Zhang W, Chen M, Gong X, Diao G (2013) Universal water-soluble cyclodextrin polymer-carbon nanomaterials with supramolecular recognition. Carbon 61:154–163

    Article  CAS  Google Scholar 

  60. Velmurugan M, Karikalan N, Chen SM, Dai ZC (2017) Studies on the influence of β-cyclodextrin on graphene oxide and its synergistic activity to the electrochemical detection of nitrobenzene. J Colloid Interface Sci 490:365–371

    Article  CAS  PubMed  Google Scholar 

  61. Kushikawa RT, Silva MR, Angelo AC, Teixeira MF (2016) Construction of an electrochemical sensing platform based on platinum nanoparticles supported on carbon for tetracycline determination. Sensors Actuators B Chem 228:207–213

    Article  CAS  Google Scholar 

  62. Palanisamy S, Kokulnathan T, Chen SM, Velusamy V, Ramaraj SK (2017) Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. J Electroanal Chem 794:64–70

    Article  CAS  Google Scholar 

  63. Tao Y, Gu X, Yang B, Deng L, Bao L, Kong Y, Qin Y (2017) Electrochemical enantioselective recognition in a highly ordered self-assembly framework. Anal Chem 89:1900–1906

    Article  CAS  PubMed  Google Scholar 

  64. Liu J, Leng X, Xiao Y, Hu C, Fu L (2015) 3D nitrogen-doped graphene/β-cyclodextrin: host-guest interactions for electrochemical sensing. Nanoscale 7:11922–11927

    Article  CAS  PubMed  Google Scholar 

  65. Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011) Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185:1177–1186

    Article  CAS  PubMed  Google Scholar 

  66. Skold ME, Thyne GD, Drexler JW, McCray JE (2009) Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD). J Contam Hydrol 107:108–113

    Article  CAS  PubMed  Google Scholar 

  67. Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135

    Article  CAS  PubMed  Google Scholar 

  68. Wang X, Gao W, Xu W, Xu S (2013) Fluorescent ag nanoclusters templated by carboxymethyl-β-cyclodextrin (CM-β-CD) and their in vitro antimicrobial activity. Mater Sci Eng C Mater Biol Appl 33:656–662

    Article  CAS  PubMed  Google Scholar 

  69. Bonacin JA, Toma SH, Freitas JN, Nogueira AF, Toma HE (2013) On the behavior of the carboxyphenylterpyridine (8-quinolinolate) thiocyanatoruthenium (II) complex as a new black dye in TiO2 solar cells modified with carboxymethyl-beta-cyclodextrin. Inorg Chem Commun 36:35–38

    Article  CAS  Google Scholar 

  70. Gao Q, Liu F, Jiang Y, Dai H, Fu T, Kou X (2011) A novel p-nitroaniline fluorescent sensor based on molecular recognition of carboxymethyl-β-cyclodextrin-capped ZnO/ZnS/MgO nanocomposites. Anal Sci 27:851–851

    Article  CAS  PubMed  Google Scholar 

  71. Wang G, Yang L, Wu F, Deng N (2014) Carboxymethyl-β-cyclodextrin enhanced TiO2 removal of acid red R and lead ions in suspended solutions. J Chem Technol Biotechnol 89:297–304

    Article  CAS  Google Scholar 

  72. Li RX, Liu SM, Zhao JQ, Otsuka H, Takahara A (2011) Preparation and characterization of cross-linked β-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures. Chin Chem Lett 22:217–220

    Article  CAS  Google Scholar 

  73. Song JP, Guo YJ, Shuang SM, Dong C (2009) Study on the supramolecular systems of two basic violets with cyclodextrins by MWNTs/Nafion modified glassy carbon electrode. Chin Chem Lett 20:981–984

    Article  CAS  Google Scholar 

  74. Tian X, Cheng C, Yuan H, Du J, Xiao D, Xie S, Choi MM (2012) Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta 93:79–85

    Article  CAS  PubMed  Google Scholar 

  75. Qu F, Ma X, Hui Y, Hou X, Yu J, Zhang Q, Chen F (2015) Fabrication of dual-path electron transfer electrode for electrochemical glucose sensing. J Electrochem Soc 162:B27–B35

    Article  CAS  Google Scholar 

  76. Hui Y, Ma X, Qu F, Chen F, Yu J, Gao Y (2016) Electropolymerization of carboxymethyl-β-cyclodextrin based on co-electrodeposition gold nanoparticles electrode: electrocatalysis and nonenzymatic glucose sensing. J Solid State Electrochem 20:1377–1389

    Article  CAS  Google Scholar 

  77. Chen S, Zhang J, Gan N, Hu F, Li T, Cao Y, Pan D (2015) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182:815–822

    Article  CAS  Google Scholar 

  78. Li X, Yu M, Chen Z, Lin X, Wu Q (2017) A sensor for detection of carcinoembryonic antigen based on the polyaniline-au nanoparticles and gap-based interdigitated electrode. Sensors Actuators B Chem 239:874–882

    Article  CAS  Google Scholar 

  79. Yang L, Zhao H, Li CP, Fan S, Li B (2015) Dual β-cyclodextrin functionalized au@ SiC nanohybrids for the electrochemical determination of tadalafil in the presence of acetonitrile. Biosens Bioelectron 64:126–130

    Article  CAS  PubMed  Google Scholar 

  80. Liu J, Yuan L, Dong X (2015) Recent advances in analytical techniques for the determination of dopamine. Int J Chem Stud 3:39–45

    CAS  Google Scholar 

  81. Yang L, Zhao H, Li Y, Li CP (2015) Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host–guest molecular recognition capability of dual β-cyclodextrin functionalized au@ graphene nanohybrids. Sensors Actuators B Chem 207:1–8

    Article  CAS  Google Scholar 

  82. Yuan Z, Ye Y, Gao F, Yuan H, Lan M, Lou K, Wang W (2013) Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. Int J Pharm 446:191–198

    Article  CAS  PubMed  Google Scholar 

  83. Quan CY, Chen JX, Wang HY, Li C, Chang C, Zhang XZ, Zhuo RX (2010) Core-shell nanosized assemblies mediated by the α-β cyclodextrin dimer with a tumor-triggered targeting property. ACS Nano 4:4211–4219

    Article  CAS  PubMed  Google Scholar 

  84. Tan L, Wang G, Chen N, Zhang J, Feng H (2015) Layer-by-layer assembled multilayers of graphene/mono-(6-amino-6-deoxy)-β-cyclodextrin for detection of dopamine. Chin J Chem 33:185–191

    Article  CAS  Google Scholar 

  85. Ban R, Abdel-Halim ES, Zhang J, Zhu JJ (2015) β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine. Analyst 140:1046–1053

    Article  CAS  PubMed  Google Scholar 

  86. Zhu G, Zhang X, Gai P, Zhang X, Chen J (2012) β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3, 4, 9, 10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid. Nanoscale 4:5703–5709

    Article  CAS  PubMed  Google Scholar 

  87. Zeng WJ, Liao N, Lei YM, Zhao J, Chai YQ, Yuan R, Zhuo Y (2018) Hemin as electrochemically regenerable co-reaction accelerator for construction of an ultrasensitive PTCA-based electrochemiluminescent aptasensor. Biosens Bioelectron 100:490–496

    Article  CAS  PubMed  Google Scholar 

  88. Kang SZ, Chen H, Li X, Mu J (2010) Preparation of L-alanine ethyl ester modified multiwalled carbon nanotubes and their chiral discrimination between D-and L-tryptophan. Diam Relat Mater 19:1221–1224

    Article  CAS  Google Scholar 

  89. Liu W, Wu L, Zhang X, Chen J (2014) Highly-selective electrochemical determination of catechol based on 3-aminophenylboronic acid-3, 4, 9, 10-perylene tetracarboxylic acid functionalized carbon nanotubes modified electrode. Anal Methods 6:718–724

    Article  CAS  Google Scholar 

  90. Wu S, Fan S, Tan S, Wang J, Li CP (2018) A new strategy for the sensitive electrochemical determination of nitrophenol isomers using β-cyclodextrin derivative-functionalized silicon carbide. RSC Adv 8:775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Valente AJ, Söderman O (2014) The formation of host–guest complexes between surfactants and cyclodextrins. Adv Colloid Interface Sci 205:156–176

    Article  CAS  PubMed  Google Scholar 

  92. Hsiao YP, Su WY, Cheng JR, Cheng SH (2011) Electrochemical determination of cysteine based on conducting polymers/gold nanoparticles hybrid nanocomposites. Electrochim Acta 56:6887–6895

    Article  CAS  Google Scholar 

  93. Zhang Q, Bai Z, Shi M, Yang L, Qiao J, Jiang K (2015) High-efficiency palladium nanoparticles supported on hydroxypropyl-β-cyclodextrin modified fullerene [60] for ethanol oxidation. Electrochim Acta 177:113–117

    Article  CAS  Google Scholar 

  94. Su WY, Cheng SH (2010) Electrochemical oxidation and sensitive determination of acetaminophen in Pharmaceuticals at Poly (3, 4-ethylenedioxythiophene)-modified screen-printed electrodes. Electroanalysis 22:707–714

    Article  CAS  Google Scholar 

  95. Xu JZ, Xu S, Geng J, Li GX, Zhu JJ (2006) The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-β-cyclodextrin as a template under sonication. Ultrason Sonochem 13:451–454

    Article  CAS  PubMed  Google Scholar 

  96. Lv M, Wang X, Li J, Yang X, Zhang CA, Yang J, Hu H (2013) Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultaneous determination of lead (II) and cadmium (II) using square wave anodic stripping voltammetry. Electrochim Acta 108:412–420

    Article  CAS  Google Scholar 

  97. Xu C, Wang J, Wan L, Lin J, Wang X (2011) Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants. J Mater Chem 21:10463–10471

    Article  CAS  Google Scholar 

  98. Zhu G, Yi Y, Liu Z, Lee HJ, Chen J (2016) Highly sensitive electrochemical sensing based on 2-hydroxypropyl-β-cyclodextrin-functionalized graphene nanoribbons. Electrochem Commun 66:10–15

    Article  CAS  Google Scholar 

  99. Zhu G, Qian J, Sun H, Wu X, Wang K, Yi Y (2017) Voltammetric determination of o-chlorophenol using β-cyclodextrin/graphene nanoribbon hybrids modified electrode. J Electroanal Chem 794:126–131

    Article  CAS  Google Scholar 

  100. Li X, Zheng L, Wang Y, Zhang N, Lou Y, Xiao T, Liu J (2015) A novel electrocatalyst with high sensitivity in detecting glutathione reduced by 2-hydroxypropyl-β-cyclodextrin enveloped 10-methylphenothiazine. RSC Adv 5:71749–71755

    Article  CAS  Google Scholar 

  101. Bai Z, Niu L, Chao S, Yan H, Cui O, Yang L, Jiang K (2013) A facile preparation of palladium nanoclusters supported on hydroxypropyl-β-cyclodextrin modified fullerene [60] for formic acid oxidation. Int J Electrochem Sci 8:10068–10079

    CAS  Google Scholar 

  102. Zhu G, Yi Y, Chen J (2016) Recent advances for cyclodextrin-based materials in electrochemical sensing. TrAC, Trends Anal Chem 80:232–241

    Article  CAS  Google Scholar 

  103. Zou J, Liu Z, Guo Y, Dong C (2017) Electrochemical sensor for the facile detection of trace amounts of bisphenol a based on cyclodextrin-functionalized graphene/platinum nanoparticles. Anal Methods 9:134–140

    Article  CAS  Google Scholar 

  104. Ran X, Yang L, Zhang J, Deng G, Li Y, Xie X, Li CP (2015) Highly sensitive electrochemical sensor based on β-cyclodextrin-gold @ 3, 4, 9, 10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin. Anal Chim Acta 892:85–94

    Article  CAS  PubMed  Google Scholar 

  105. Thota R, Ganesh V (2016) Selective and sensitive electrochemical detection of methyl parathion using chemically modified overhead projector sheets as flexible electrodes. Sensors Actuators B Chem 227:169–177

    Article  CAS  Google Scholar 

  106. Zhu G, Gai P, Yang Y, Zhang X, Chen J (2012) Electrochemical sensor for naphthols based on gold nanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalized with SH-β-cyclodextrin. Anal Chim Acta 723:33–38

    Article  CAS  PubMed  Google Scholar 

  107. Muñoz J, Riba-Moliner M, Brennan LJ, Gun’ko YK, Céspedes F, González-Campo A, Baeza M (2016) Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrin. Microchim Acta 183:1579–1589

    Article  CAS  Google Scholar 

  108. Gnahore GT, Velasco-Torrijos T, Colleran J (2017) The selective electrochemical detection of dopamine using a sulfated β-Cyclodextrin carbon paste electrode. Electrocatalysis 8:459–471

    Article  CAS  Google Scholar 

  109. Fu XC, Zhang J, Tao YY, Wu J, Xie CG, Kong LT (2015) Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim Acta 153:12–18

    Article  CAS  Google Scholar 

  110. Li P, Liu Y, Wang X, Tang B (2011) A new FRET nanoprobe for trypsin using a bridged β-cyclodextrin dimer–dye complex and its biological imaging applications. Analyst 136:4520–4525

    Article  CAS  PubMed  Google Scholar 

  111. Yang L, Fan S, Deng G, Li Y, Ran X, Zhao H, Li CP (2015) Bridged β-cyclodextrin-functionalized MWCNT with higher supramolecular recognition capability: the simultaneous electrochemical determination of three phenols. Biosens Bioelectron 68:617–625

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51262027), the financial support of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201754), the Science and Technology Project Gansu Province (17YF1GA017), the Research Project of Higher Education in Gansu Province (2017A-002) and the Science and Technology Project Gansu Province (17JR5RA082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunli Mo.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Mo, Z., Yang, X. et al. Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchim Acta 185, 328 (2018). https://doi.org/10.1007/s00604-018-2859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2859-6

Keywords

Navigation