Skip to main content

Advertisement

Log in

Improving outcomes in traumatic peripheral nerve injuries to the upper extremity

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Peripheral nerve lesions of the upper extremity are common and are associated with devastating limitations for the patient. Rapid and accurate diagnosis of the lesion by electroneurography, neurosonography, or even MR neurography is important for treatment planning. There are different therapeutic approaches, which may show individual differences depending on the injured nerve. If a primary nerve repair is not possible, several strategies exist to bridge the gap. These may include autologous nerve grafts, bioartificial nerve conduits, or acellular nerve allografts. Tendon and nerve transfers are also of major importance in the treatment of nerve lesions in particular with long regeneration distances. As a secondary reconstruction, in addition to tendon transfers, there is also the option for free functional muscle transfer. In amputations, the prevention of neuroma is of great importance, for which different strategies exist, such as target muscle reinnervation, regenerative peripheral nerve interface, or neurotized flaps. In this article, we give an overview of the latest methods for the therapy of peripheral nerve lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADM:

Abductor digiti minimi

AIN:

Anterior interosseous nerve

ALT:

Anterolateral thigh

ANA:

Acellular nerve allograft

ANG:

Autologous nerve graft

APB:

Abductor pollicis brevis

BR:

Brachioradialis

CE:

Conformité Européenne

DASH:

Disabilities of the arm, shoulder, and hand

DIEP:

Deep inferior epigastric perforator

ECRB:

Extensor carpi radialis brevis

ECRL:

Extensor carpi radialis longus

EDC:

Extensor digitorum communis

EN:

Electroneurography

EPL:

Extensor pollicis longus

FCR:

Flexor carpi radialis

FCU:

Flexor carpi ulnaris

FDA:

Food and Drug Administration

FDP:

Flexor digitorum profundus

FDS:

Flexor digitorum superficialis

LAF:

Lateral arm flap

MRN:

Magnetic resonance neurography

NS:

Neurosonography

PL:

Palmaris longus

PNI:

Peripheral nerve injury

RPNI:

Regenerative peripheral nerve interface

TMR:

Targeted muscle reinnervation

VDMT:

Vascularized denervated muscle target

References

  1. Bergmeister KD, Große-Hartlage L, Daeschler SC, Rhodius P, Böcker A, Beyersdorff M, Kern AO, Kneser U, Harhaus L (2020) Acute and long-term costs of 268 peripheral nerve injuries in the upper extremity. PLoS ONE 15(4):e0229530. https://doi.org/10.1371/journal.pone.0229530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Padovano WM, Dengler J, Patterson MM, Yee A, Snyder-Warwick AK, Wood MD, Moore AM, Mackinnon SE (2020) Incidence of nerve injury after extremity trauma in the United States. HAND. https://doi.org/10.1177/1558944720963895

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boecker AH, Lukhaup L, Aman M, Bergmeister K, Schwarz D, Bendszus M, Kneser U, Harhaus L (2022) Evaluation of MR-neurography in diagnosis and treatment in peripheral nerve surgery of the upper extremity: a matched cohort study. Microsurgery 42(2):160–169. https://doi.org/10.1002/micr.30846

    Article  PubMed  Google Scholar 

  4. Aman M, Zimmermann KS, Thielen M, Thomas B, Daeschler S, Boecker AH, Stolle A, Bigdeli AK, Kneser U, Harhaus L (2022) An epidemiological and etiological analysis of 5026 peripheral nerve lesions from a European level I trauma center. J Pers Med. https://doi.org/10.3390/jpm12101673

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aman M, Zimmermann KS, Boecker AH, Thielen M, Falkner F, Daeschler S, Stolle A, Kneser U, Harhaus L (2023) Peripheral nerve injuries in children-prevalence, mechanisms and concomitant injuries: a major trauma center’s experience. Eur J Med Res 28(1):116. https://doi.org/10.1186/s40001-023-01082-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Afsal M, Chowdhury V, Prakash A, Singh S, Chowdhury N (2016) Evaluation of peripheral nerve lesions with high-resolution ultrasonography and color Doppler. Neurol India 64(5):1002–1009. https://doi.org/10.4103/0028-3886.190269

    Article  PubMed  Google Scholar 

  7. Bendszus M, Stoll G (2005) Technology insight: visualizing peripheral nerve injury using MRI. Nat Clin Pract Neurol 1(1):45–53. https://doi.org/10.1038/ncpneuro0017

    Article  PubMed  Google Scholar 

  8. Miyamoto Y, Watari S, Tsuge K (1979) Experimental studies on the effects of tension on intraneural microcirculation in sutured peripheral nerves. Plast Reconstr Surg 63(3):398–403. https://doi.org/10.1097/00006534-197903000-00020

    Article  CAS  PubMed  Google Scholar 

  9. Ray WZ, Mackinnon SE (2010) Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 223(1):77–85. https://doi.org/10.1016/j.expneurol.2009.03.031

    Article  PubMed  Google Scholar 

  10. Regas I, Loisel F, Haight H, Menu G, Obert L, Pluvy I (2020) Functionalized nerve conduits for peripheral nerve regeneration: a literature review. Hand Surg Rehabil 39(5):343–351. https://doi.org/10.1016/j.hansur.2020.05.007

    Article  CAS  PubMed  Google Scholar 

  11. Millesi H (1972) Operative reconstruction of injured nerves. Langenbecks Arch Chir 332:347–354. https://doi.org/10.1007/bf01282652

    Article  CAS  PubMed  Google Scholar 

  12. Penkert G, Bini W, Samii M (1988) Revascularization of nerve grafts: an experimental study. J Reconstr Microsurg 4(4):319–325. https://doi.org/10.1055/s-2007-1006938

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347. https://doi.org/10.1146/annurev.bioeng.5.011303.120731

    Article  CAS  PubMed  Google Scholar 

  14. Kim SS, Sohn SK, Lee KY, Lee MJ, Roh MS, Kim CH (2010) Use of human amniotic membrane wrap in reducing perineural adhesions in a rabbit model of ulnar nerve neurorrhaphy. J Hand Surg Eur 35(3):214–219. https://doi.org/10.1177/1753193409352410

    Article  CAS  Google Scholar 

  15. Chrząszcz P, Derbisz K, Suszyński K, Miodoński J, Trybulski R, Lewin-Kowalik J, Marcol W (2018) Application of peripheral nerve conduits in clinical practice: A literature review. Neurol Neurochir Pol 52(4):427–435. https://doi.org/10.1016/j.pjnns.2018.06.003

    Article  PubMed  Google Scholar 

  16. Lohmeyer JA, Shen ZL, Walter GF, Berger A (2007) Bridging extended nerve defects with an artifcial nerve graft containing Schwann cells pre-seeded on polyglactin filaments. Int J Artif Organs 30(1):64–74. https://doi.org/10.1177/039139880703000109

    Article  CAS  PubMed  Google Scholar 

  17. Boecker AH, van Neerven SG, Scheffel J, Tank J, Altinova H, Seidensticker K, Deumens R, Tolba R, Weis J, Brook GA, Pallua N, Bozkurt A (2016) Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model. Eur J Neurosci 43(3):404–416. https://doi.org/10.1111/ejn.13052

    Article  PubMed  Google Scholar 

  18. Kehoe S, Zhang XF, Boyd D (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43(5):553–572. https://doi.org/10.1016/j.injury.2010.12.030

    Article  CAS  PubMed  Google Scholar 

  19. Safa B, Jain S, Desai MJ, Greenberg JA, Niacaris TR, Nydick JA, Leversedge FJ, Megee DM, Zoldos J, Rinker BD, McKee DM, MacKay BJ, Ingari JV, Nesti LJ, Cho M, Valerio IL, Kao DS, El-Sheikh Y, Weber RV, Shores JT, Styron JF, Thayer WP, Przylecki WH, Hoyen HA, Buncke GM (2020) Peripheral nerve repair throughout the body with processed nerve allografts: results from a large multicenter study. Microsurgery 40(5):527–537. https://doi.org/10.1002/micr.30574

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leckenby JI, Furrer C, Haug L, JuonPersoneni B, Vögelin E (2020) A retrospective case series reporting the outcomes of avance nerve allografts in the treatment of peripheral nerve injuries. Plast Reconstr Surg 145(2):368e–381e. https://doi.org/10.1097/prs.0000000000006485

    Article  CAS  PubMed  Google Scholar 

  21. Kovačič U, Zele T, Tomšič M, Sketelj J, Bajrović FF (2012) Influence of breaching the connective sheaths of the donor nerve on its myelinated sensory axons and on their sprouting into the end-to-side coapted nerve in the rat. J Neurotrauma 29(18):2805–2815. https://doi.org/10.1089/neu.2011.2298

    Article  PubMed  PubMed Central  Google Scholar 

  22. Millesi H, Schmidhammer R (2008) Nerve fiber transfer by end-to-side coaptation. Hand Clin 24(4):461–483. https://doi.org/10.1016/j.hcl.2008.04.007

    Article  PubMed  Google Scholar 

  23. Curran MWT, Olson JL, Morhart MJ, Wu SSZ, Midha R, Berger MJ, Chan KM (2022) Reverse end-to-side nerve transfer for severe ulnar nerve injury: a western Canadian multicentre prospective nonrandomized cohort study. Neurosurgery 91(6):856–862. https://doi.org/10.1227/neu.0000000000002143

    Article  PubMed  Google Scholar 

  24. Bertelli JA, Ghizoni MF (2007) Transfer of the accessory nerve to the suprascapular nerve in brachial plexus reconstruction. J Hand Surg Am 32(7):989–998. https://doi.org/10.1016/j.jhsa.2007.05.016

    Article  PubMed  Google Scholar 

  25. Srampickal GM, Mathew A, Raveendran S, Yadav BK, Thomas BP (2021) Restoration of elbow flexion in adult traumatic brachial plexus injury—a quantitative analysis of results of single versus double nerve transfer. Injury 52(3):511–515. https://doi.org/10.1016/j.injury.2020.10.090

    Article  PubMed  Google Scholar 

  26. Sneiders D, Bulstra LF, Hundepool CA, Treling WJ, Hovius SER, Shin AY (2019) Outcomes of single versus double fascicular nerve transfers for restoration of elbow flexion in patients with brachial plexus injuries: a systematic review and meta-analysis. Plast Reconstr Surg 144(1):155–166. https://doi.org/10.1097/prs.0000000000005720

    Article  CAS  PubMed  Google Scholar 

  27. Schreiber JJ, Byun DJ, Khair MM, Rosenblatt L, Lee SK, Wolfe SW (2015) Optimal axon counts for brachial plexus nerve transfers to restore elbow flexion. Plast Reconstr Surg 135(1):135e–141e. https://doi.org/10.1097/prs.0000000000000795

    Article  CAS  PubMed  Google Scholar 

  28. Ray WZ, Mackinnon SE (2011) Clinical outcomes following median to radial nerve transfers. J Hand Surg Am 36(2):201–208. https://doi.org/10.1016/j.jhsa.2010.09.034

    Article  PubMed  Google Scholar 

  29. Davidge KM, Yee A, Moore AM, Mackinnon SE (2015) The supercharge end-to-side anterior interosseous-to-ulnar motor nerve transfer for restoring intrinsic function: clinical experience. Plast Reconstr Surg 136(3):344e–352e. https://doi.org/10.1097/prs.0000000000001514

    Article  CAS  PubMed  Google Scholar 

  30. Moore AM, Franco M, Tung TH (2014) Motor and sensory nerve transfers in the forearm and hand. Plast Reconstr Surg 134(4):721–730. https://doi.org/10.1097/prs.0000000000000509

    Article  CAS  PubMed  Google Scholar 

  31. Aman M, Boecker AH, Thielen M, Mueller CT, Bigdeli AK, Kneser U, Harhaus L (2021) Single incision thenar muscle reconstruction using the free functional pronator quadratus flap. BMC Surg 21(1):310. https://doi.org/10.1186/s12893-021-01308-x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aman M, Böcker A, Kneser U, Harhaus L (2021) Selective nerve transfers for thenar branch reconstruction. Oper Orthop Traumatol 33(5):384–391. https://doi.org/10.1007/s00064-020-00689-1

    Article  PubMed  Google Scholar 

  33. Bertelli JA, Soldado F, Rodrígues-Baeza A, Ghizoni MF (2018) Transfer of the motor branch of the abductor digiti quinti for thenar muscle reinnervation in high median nerve injuries. J Hand Surg Am 43(1):8–15. https://doi.org/10.1016/j.jhsa.2017.08.009

    Article  PubMed  Google Scholar 

  34. Krarup C, Boeckstyns M, Ibsen A, Moldovan M, Archibald S (2016) Remodeling of motor units after nerve regeneration studied by quantitative electromyography. Clin Neurophysiol 127(2):1675–1682. https://doi.org/10.1016/j.clinph.2015.08.008

    Article  PubMed  Google Scholar 

  35. Vlot MA, Wilkens SC, Chen NC, Eberlin KR (2018) Symptomatic neuroma following initial amputation for traumatic digital amputation. J Hand Surg Am 43(1):86.e81-86.e88. https://doi.org/10.1016/j.jhsa.2017.08.021

    Article  Google Scholar 

  36. Guse DM, Moran SL (2013) Outcomes of the surgical treatment of peripheral neuromas of the hand and forearm: a 25-year comparative outcome study. Ann Plast Surg 71(6):654–658. https://doi.org/10.1097/SAP.0b013e3182583cf9

    Article  CAS  PubMed  Google Scholar 

  37. Poppler LH, Parikh RP, Bichanich MJ, Rebehn K, Bettlach CR, Mackinnon SE, Moore AM (2018) Surgical interventions for the treatment of painful neuroma: a comparative meta-analysis. Pain 159(2):214–223. https://doi.org/10.1097/j.pain.0000000000001101

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dellon AL, Mackinnon SE (1986) Treatment of the painful neuroma by neuroma resection and muscle implantation. Plast Reconstr Surg 77(3):427–438. https://doi.org/10.1097/00006534-198603000-00016

    Article  CAS  PubMed  Google Scholar 

  39. Kakinoki R, Ikeguchi R, Matsumoto T, Shimizu M, Nakamura T (2003) Treatment of painful peripheral neuromas by vein implantation. Int Orthop 27(1):60–64. https://doi.org/10.1007/s00264-002-0390-0

    Article  PubMed  Google Scholar 

  40. Galeano M, Manasseri B, Risitano G, Geuna S, Di Scipio F, La Rosa P, Delia G, D’Alcontres FS, Colonna MR (2009) A free vein graft cap influences neuroma formation after nerve transection. Microsurgery 29(7):568–572. https://doi.org/10.1002/micr.20652

    Article  PubMed  Google Scholar 

  41. Yüksel F, Kişlaoğlu E, Durak N, Uçar C, Karacaoğlu E (1997) Prevention of painful neuromas by epineural ligatures, flaps and grafts. Br J Plast Surg 50(3):182–185. https://doi.org/10.1016/s0007-1226(97)91367-9

    Article  PubMed  Google Scholar 

  42. Swanson AB, Boeve NR, Lumsden RM (1977) The prevention and treatment of amputation neuromata by silicone capping. J Hand Surg Am 2(1):70–78. https://doi.org/10.1016/s0363-5023(77)80013-0

    Article  CAS  PubMed  Google Scholar 

  43. Yan H, Zhang F, Kolkin J, Wang C, Xia Z, Fan C (2014) Mechanisms of nerve capping technique in prevention of painful neuroma formation. PLoS ONE 9(4):e93973. https://doi.org/10.1371/journal.pone.0093973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hong T, Wood I, Hunter DA, Yan Y, Mackinnon SE, Wood MD, Moore AM (2021) Neuroma management: capping nerve injuries with an acellular nerve allograft can limit axon regeneration. Hand 16(2):157–163. https://doi.org/10.1177/1558944719849115

    Article  PubMed  Google Scholar 

  45. Kubiak CA, Svientek SR, Dehdashtian A, Lawera NG, Nadarajan V, Bratley JV, Kung TA, Cederna PS, Kemp SWP (2021) Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves. J Neural Eng. https://doi.org/10.1088/1741-2552/ac1b6b

  46. Kubiak CA, Kemp SWP, Cederna PS, Kung TA (2019) Prophylactic regenerative peripheral nerve interfaces to prevent postamputation pain. Plast Reconstr Surg 144(3):421e–430e. https://doi.org/10.1097/prs.0000000000005922

    Article  CAS  PubMed  Google Scholar 

  47. Tuffaha SH, Glass C, Rosson G, Shores J, Belzberg A, Wong A (2020) Vascularized, denervated muscle targets: a novel approach to treat and prevent symptomatic neuromas. Plast Reconstr Surg Glob Open 8(4):e2779. https://doi.org/10.1097/gox.0000000000002779

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301(6):619–628. https://doi.org/10.1001/jama.2009.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dumanian GA, Potter BK, Mioton LM, Ko JH, Cheesborough JE, Souza JM, Ertl WJ, Tintle SM, Nanos GP, Valerio IL, Kuiken TA, Apkarian AV, Porter K, Jordan SW (2019) Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann Surg 270(2):238–246. https://doi.org/10.1097/sla.0000000000003088

    Article  PubMed  Google Scholar 

  50. Aman M, Glaser JJ, Boecker AH, Thielen M, Eisa A, Bigdeli AK, Gazyakan E, Kneser U, Harhaus L (2023) Hopeless neuroma-the neurotized free flap tissue augmentation as salvage therapy-a concept and clinical demonstration. J Pers Med. https://doi.org/10.3390/jpm13020313

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne H. Boecker.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethic approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent is needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript belongs to the Special Issue of ESOT “Current Practice and International Perspectives in Replantation and Microvascular Reconstruction in Upper Extremity Traumatic Amputation”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, K.S., Aman, M., Harhaus, L. et al. Improving outcomes in traumatic peripheral nerve injuries to the upper extremity. Eur J Orthop Surg Traumatol (2023). https://doi.org/10.1007/s00590-023-03751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00590-023-03751-3

Keywords

Navigation