Skip to main content

Advertisement

Log in

Biomechanical analysis of lumbar interbody fusion supplemented with various posterior stabilization systems

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Biomechanical comparison between rigid and non-rigid posterior stabilization systems following lumbar interbody fusion has been conducted in several studies. However, most of these previous studies mainly focused on investigating biomechanics of adjacent spinal segments or spine stability. The objective of the present study was to compare biomechanical responses of the fusion devices when using different posterior instrumentations.

Methods

Finite-element model of the intact human lumbar spine (L1–sacrum) was modified to simulate implantation of the fusion cage at L4–L5 level supplemented with different posterior stabilization systems including (i) pedicle screw-based fixation using rigid connecting rods (titanium rods), (ii) pedicle screw-based fixation using flexible connecting rods (PEEK rods) and (iii) dynamic interspinous spacer (DIAM). Stress responses were compared among these various models under bending moments.

Results

The highest and lowest stresses in endplate, fusion cage and bone graft were found at the fused L4–L5 level with DIAM and titanium rod stabilization systems, respectively. When using PEEK rod for the pedicle screw fixation, peak stress in the pedicle screw was lower but the ratio of peak stress in the rods to yield stress of the rod material was higher than using titanium rod.

Conclusions

Compared with conventional rigid posterior stabilization system, the use of non-rigid stabilization system (i.e., the PEEK rod system and DIAM system) following lumbar interbody fusion might increase the risks of cage subsidence and cage damage, but promote bony fusion due to higher stress in the bone graft. For the pedicle screw-based rod stabilization system, using PEEK rod might reduce the risk of screw breakage but increased breakage risk of the rod itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491

    Article  PubMed  Google Scholar 

  2. Tartara F, Bongetta D, Pilloni G, Colombo EV, Giombelli E (2020) Custom-made trabecular titanium implants for the treatment of lumbar degenerative discopathy via ALIF/XLIF techniques: rationale for use and preliminary results. Eur Spine J 44(3):551–559

    Google Scholar 

  3. Chan AY, Lien BV, Choi EH et al (2020) Back pain outcomes after minimally invasive anterior lumbar interbody fusion: a systematic review. Neurosurg Focus 49(3):E3

    Article  PubMed  Google Scholar 

  4. Deyo RA, Nachemson A, Mirza SK (2004) Spinal-fusion surgery-the case for restraint. N Engl J Med 350(7):722–726

    Article  CAS  PubMed  Google Scholar 

  5. Fan W, Guo LX (2019) A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: finite element static and vibration analyses. Int J Numer Method Biomed Eng 35(3):e3162

    Article  PubMed  Google Scholar 

  6. La Barbera L, Wilke HJ, Liebsch C et al (2020) Impact of lordotic cages in the restoration of spinopelvic parameters after dorsal lumbar interbody fusion: a retrospective case control study. Eur Spine J 29(1):36–44

    Article  PubMed  Google Scholar 

  7. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP. LLIF ALIF J Spine Surg 1(1):2–18

    PubMed  Google Scholar 

  8. Ahn YH, Chen WM, Lee KY, Park KW, Lee SJ (2008) Comparison of the load-Sharing characteristics between pedicle-based dynamic and rigid rod devices. Biomed Mater 3(4):044101

    Article  PubMed  CAS  Google Scholar 

  9. Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 29(17):1938–1944

    Article  PubMed  Google Scholar 

  10. Li C, Liu L, Sh JY, Yan KZ, Shen WZ, Yang ZR (2018) Clinical and biomechanical researches of polyetheretherketone (PEEK) rods for semi-rigid lumbar fusion: a systematic review. Neurosurg Rev 41(2):375–389

    Article  PubMed  Google Scholar 

  11. Kim YS, Zhang HY, Moon BJ et al (2007) Nitinol spring rod dynamic stabilization system and Nitinol memory loops in surgical treatment for lumbar disc disorders: short-term follow up. Neurosurg Focus 22(1):E10

    PubMed  Google Scholar 

  12. Yuan W, Su QJ, Liu T et al (2017) Evaluation of Coflex interspinous stabilization following decompression compared with decompression and posterior lumbar interbody fusion for the treatment of lumbar degenerative disease: a minimum 5-year follow-up study. J Clin Neurosci 35:24–29

    Article  PubMed  Google Scholar 

  13. Kuo CH, Huang WC, Wu JC et al (2018) Radiological adjacent-segment degeneration in L4–5 spondylolisthesis: comparison between dynamic stabilization and minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine 29(3):250–258

    Article  PubMed  Google Scholar 

  14. Ponnappan RK, Serhan H, Zarda B, Patel R, Albert T, Vaccaro AR (2009) Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J 9(3):263–267

    Article  PubMed  Google Scholar 

  15. Chou WK, Chien A, Wang JL (2015) Biomechanical analysis between PEEK and titanium screw-rods spinal construct subjected to fatigue loading. J Spinal Disord Tech 28(3):E121–E125

    Article  PubMed  Google Scholar 

  16. Kang KT, Koh YG, Son J, Yeom JS, Park JH, Kim HJ (2017) Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials. Compos B Eng 130:248–256

    Article  CAS  Google Scholar 

  17. Hsieh YY, Tsuang FY, Kuo YJ, Chen CH, Chiang CJ, Lin CL (2020) Biomechanical analysis of single-level interbody fusion with different internal fixation rod materials: a finite element analysis. BMC Musculoskelet Disord 21(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim HJ, Bak KH, Chun HJ, Oh SJ, Kang TH, Yang MS (2012) Posterior interspinous fusion device for one-level fusion in degenerative lumbar spine disease: comparison with pedicle screw fixation-preliminary report of at least one year follow up. J Korean Neurosurg Soc 52(4):359–364

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen HM, Chen JY (2012) A novel nonpedicular screw-based fixation in lumbar spondylolisthesis. Biomed Res Int 217:5619350

    Google Scholar 

  20. Karahalios DG, Kaibara T, Porter RW et al (2010) Biomechanics of a lumbar interspinous anchor with anterior lumbar interbody fusion. Spine 12(4):372–380

    PubMed  Google Scholar 

  21. Gonzalez-Blohm SA, Doulgeris JJ, Aghayev K, Lee WE III, Volkov A, Vrionis FD (2014) Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. J Neurosurg Spine 20(2):209–219

    Article  PubMed  Google Scholar 

  22. Woods KRM, Billys JB, Hynes RA (2017) Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J 17(4):545–553

    Article  PubMed  Google Scholar 

  23. Palepu V, Helgeson MD, Molyneaux-Francis M, Nagaraja S (2019) The effects of bone microstructure on subsidence risk for ALIF, LLIF, PLIF, and TLIF spine cages. J Biomech Eng 141(3):031002

    Article  Google Scholar 

  24. Faizan A, Kiapour A, Kiapour AM, Goel VK (2014) Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices. J Spinal Disord Tech 27(4):E118–E127

    Article  PubMed  Google Scholar 

  25. Fan W, Guo LX (2018) Finite element investigation of the effect of nucleus removal on vibration characteristics of the lumbar spine under a compressive follower preload. J Mech Behav Biomed Mater 78:342–351

    Article  PubMed  Google Scholar 

  26. Guo LX, Fan W (2018) Dynamic response of the lumbar spine to whole-body vibration under a compressive follower preload. Spine 43(3):E143–E153

    Article  PubMed  Google Scholar 

  27. Cheung KMC, Karppinen J, Chan D et al (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34(9):934–940

    Article  PubMed  Google Scholar 

  28. Fan W, Guo LX (2020) The effect of non-fusion dynamic stabilization on biomechanical responses of the implanted lumbar spine during whole-body vibration. Comput Method Progr Biomed 192:105441

    Article  Google Scholar 

  29. Agarwal A, Palepu V, Agarwal AK, Goel VK, Yildirim ED (2013) Biomechanical evaluation of an endplate-conformed polycaprolactone-hydroxyapatite intervertebral fusion graft and its comparison with a typical nonconformed cortical graft. J Biomech Eng 135(6):061005

    Article  Google Scholar 

  30. Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12(4):413–420

    Article  PubMed  Google Scholar 

  31. Lo HJ, Chen CS, Chen HM, Yang SW (2019) Application of an interspinous process device after minimally invasive lumbar decompression could lead to stress redistribution at the pars interarticularis: a finite element analysis. BMC Musculoskelet Disord 20:213

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech 22(4):377–384

    Article  Google Scholar 

  33. Más Y, Gracia L, Ibarz E, Gabarre S, Peña D, Herrera A (2017) Finite element simulation and clinical followup of lumbar spine biomechanics with dynamic fixations. PLoS ONE 12(11):e0188328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhang MZ, Pu F, Xu LQ et al (2016) Long-term effects of placing one or two cages in instrumented posterior lumbar interbody fusion. Int Orthop 40(6):1239–1246

    Article  PubMed  Google Scholar 

  35. Ayturk UM, Puttlitz CM (2011) Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Methods Biomech Biomed Eng 14(8):695–705

    Article  Google Scholar 

  36. Fan W, Guo LX, Zhao D (2019) Stress analysis of the implants in transforaminal lumbar interbody fusion under static and vibration loadings: a comparison between pedicle screw fixation system with rigid and flexible rods. J Mater Sci Mater Med 30:118

    Article  PubMed  CAS  Google Scholar 

  37. Lee CH, Kim YE, Lee HJ, Kim DG, Kim CH (2017) Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw-based dynamic fixator. J Neurosurg Spine 27(6):643–649

    Article  PubMed  Google Scholar 

  38. Zhang ZJ, Fogel GR, Liao ZH, Sun YT, Liu WQ (2018) Biomechanical analysis of lumbar interbody fusion cages with various lordotic angles: a finite element study. Comput Methods Biomech Biomed Eng 21(3):247–254

    Article  Google Scholar 

  39. Cho CB, Ryu KS, Park CK (2010) Anterior lumbar interbody fusion with stand-alone interbody cage in treatment of lumbar intervertebral foraminal stenosis: comparative study of two different types of cages. J Korean Neurosurg Soc 47(5):352–357

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bozkus H, Senoglu M, Baek S et al (2010) Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization Laboratory investigation. J Neurosurg Spine 12(2):183–189

    Article  PubMed  Google Scholar 

  41. Gornet MF, Chan FW, Coleman JC et al (2011) Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs. J Biomech Eng 133(8):081009

    Article  PubMed  Google Scholar 

  42. Kim K, Park WM, Kim YH, Lee S (2010) Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine. Proc Inst Mech Eng H 224(3):477–485

    Article  PubMed  Google Scholar 

  43. Godzik J, Kalb S, Martinez-del-Campo E et al (2016) Biomechanical evaluation of the CD HORIZON spire Z spinal system with pedicle and facet fixation. Spine 41(15):E902–E907

    Article  PubMed  Google Scholar 

  44. Chou PH, Lin HH, An HS, Liu KY, Su WR, Lin CL (2017) Could the topping-off technique be the preventive strategy against adjacent segment disease after pedicle screw-based fusion in lumbar degenerative diseases? A Syst Rev Biomed Res Int 2017:4385620

    Google Scholar 

  45. Bagby GW (1988) Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics 11(6):931–934

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 52005089, 51875096) and Fundamental Research Funds for the Central Universities (Grant No. N2103010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Guo, LX. & Zhang, M. Biomechanical analysis of lumbar interbody fusion supplemented with various posterior stabilization systems. Eur Spine J 30, 2342–2350 (2021). https://doi.org/10.1007/s00586-021-06856-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06856-7

Keywords

Navigation